Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Contribute to GitLab
Sign in
Toggle navigation
C
cloud-orbit
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Commits
Issue Boards
Open sidebar
Katerina Roukounaki
cloud-orbit
Commits
7521e841
Commit
7521e841
authored
Nov 18, 2014
by
Yiannis Tsiouris
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Implement Bench module
parent
182f0840
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
149 additions
and
1 deletion
+149
-1
Bench.hs
Bench.hs
+148
-0
Makefile
Makefile
+1
-1
No files found.
Bench.hs
0 → 100644
View file @
7521e841
module
Bench
(
-- sets of generators
g
,
g1
,
g2
,
g3
,
g4
,
g5
,
g12
,
g13
,
g14
,
g15
,
g23
,
g24
,
g25
,
g34
,
g35
,
g45
,
g123
,
g124
,
g125
,
g134
,
g135
,
g145
,
g234
,
g235
,
g245
,
g345
,
g1234
,
g1235
,
g1245
,
g1345
,
g2345
,
g12345
-- sequential benchmarks
,
seq
-- parallel benchmarks
,
par
,
par_seq
-- distributed benhcmarks
,
dist
,
dist_seq
)
where
import
Data.List
(
lookup
)
import
Data.Maybe
(
fromMaybe
)
import
Prelude
hiding
(
seq
)
import
Master
(
HostInfo
(
..
),
MaybeHosts
(
..
),
orbit
)
-----------------------------------------------------------------------------
-- generators
-- Fibonacci numbers
fib
::
Int
->
Int
fib
0
=
1
fib
1
=
1
fib
n
=
fib
(
n
-
1
)
+
fib
(
n
-
2
)
-- mixing polynomials (up to degree 3)
p2
::
Int
->
Int
->
Int
p2
a0
_
=
a0
p3
::
Int
->
Int
->
Int
->
Int
p3
a1
a0
n
=
a1
*
n
+
p2
a0
n
p4
::
Int
->
Int
->
Int
->
Int
->
Int
p4
a2
a1
a0
n
=
a2
*
n
*
n
+
p3
a1
a0
n
p5
::
Int
->
Int
->
Int
->
Int
->
Int
->
Int
p5
a3
a2
a1
a0
n
=
a3
*
n
*
n
*
n
+
p4
a2
a1
a0
n
-- step functions (up to 4 steps)
s2
::
Int
->
Int
->
Int
s2
b0
n
|
n
<
b0
=
0
|
otherwise
=
1
s3
::
Int
->
Int
->
Int
->
Int
s3
b0
b1
n
|
n
<
b0
=
0
|
otherwise
=
1
+
s2
b1
n
s4
::
Int
->
Int
->
Int
->
Int
->
Int
s4
b0
b1
b2
n
|
n
<
b0
=
0
|
otherwise
=
1
+
s3
b1
b2
n
s5
::
Int
->
Int
->
Int
->
Int
->
Int
->
Int
s5
b0
b1
b2
b3
n
|
n
<
b0
=
0
|
otherwise
=
1
+
s4
b1
b2
b3
n
-- remainder function (range 0..R - 1)
r
::
Int
->
Int
->
Int
r
r0
n
=
(
abs
n
)
`
rem
`
r0
-- generators based on Fibonacci numbers;
-- functions f1(N,_),...,f5(N,_) produce numbers in the range 0 .. N-1;
-- computationally f1 = fib(0..15),
-- f2 = fib(5..20),
-- f3 = fib(10..25),
-- f4 = fib(11,19,27), bias 49- to 11, 49- to 19, 2- to 27
-- f5 = fib(10,20,30), bias 90- to 10, 9.9- to 20, 0.1- to 30
f1
n
x
=
r
n
$
(
fib
(
p3
1
0
(
r
16
x
)))
+
p3
1
0
x
f2
n
x
=
r
n
$
(
fib
(
p3
1
5
(
r
16
x
)))
+
p4
2
5
(
-
1
)
x
f3
n
x
=
r
n
$
(
fib
(
p3
1
10
(
r
16
x
)))
+
p5
(
-
1
)
0
8
0
x
f4
n
x
=
r
n
$
(
fib
(
p3
8
3
(
s5
0
49
98
100
(
r
100
x
))))
+
p2
(
-
1
)
x
f5
n
x
=
r
n
$
(
fib
(
p3
10
0
(
s5
0
900
999
1000
(
r
1000
x
))))
+
p2
1
x
-- sets (= lists) of generators
g
_
=
[]
g1
n
=
[
f1
n
]
g2
n
=
[
f2
n
]
g3
n
=
[
f3
n
]
g4
n
=
[
f4
n
]
g5
n
=
[
f5
n
]
g12
n
=
g1
n
++
g2
n
g13
n
=
g1
n
++
g3
n
g14
n
=
g1
n
++
g4
n
g15
n
=
g1
n
++
g5
n
g23
n
=
g2
n
++
g3
n
g24
n
=
g2
n
++
g4
n
g25
n
=
g2
n
++
g5
n
g34
n
=
g3
n
++
g4
n
g35
n
=
g3
n
++
g5
n
g45
n
=
g4
n
++
g5
n
g123
n
=
g12
n
++
g3
n
g124
n
=
g12
n
++
g4
n
g125
n
=
g12
n
++
g5
n
g134
n
=
g13
n
++
g4
n
g135
n
=
g13
n
++
g5
n
g145
n
=
g14
n
++
g5
n
g234
n
=
g23
n
++
g4
n
g235
n
=
g23
n
++
g5
n
g245
n
=
g24
n
++
g5
n
g345
n
=
g34
n
++
g5
n
g1234
n
=
g123
n
++
g4
n
g1235
n
=
g123
n
++
g5
n
g1245
n
=
g124
n
++
g5
n
g1345
n
=
g134
n
++
g5
n
g2345
n
=
g234
n
++
g5
n
g12345
n
=
g1234
n
++
g5
n
-----------------------------------------------------------------------------
-- benchmarks, parametrised by
-- * list of Generators
-- * size of space N > 0
-- * number of processors P > 0 (per node)
-- * list of Workers (in short node name format 'name@host')
-- sequential orbit computation
seq
generators
n
=
sz
$
orbit
(
generators
n
)
[
0
]
(
Seq
(
2
*
n
))
-- parallel orbit computation (par_seq/3 does not spawn image computation)
par
generators
n
p
=
sz
$
orbit
(
generators
n
)
[
0
]
(
Par
(
JustOne
(
p
,
((
2
*
n
)
`
div
`
p
)
+
1
,
0
,
True
)))
par_seq
generators
n
p
=
sz
$
orbit
(
generators
n
)
[
0
]
(
Par
(
JustOne
(
p
,
((
2
*
n
)
`
div
`
p
)
+
1
,
0
,
False
)))
-- distributed orbit computation (dist_seq/4 does not spawn image computation)
dist
generators
n
p
workers
=
sz
$
orbit
(
generators
n
)
[
0
]
(
Par
(
Many
[(
h
,
p
,
(
2
*
n
)
`
div
`
(
w
*
p
)
+
1
,
1
,
True
)
|
h
<-
workers
]))
where
w
=
length
workers
dist_seq
generators
n
p
workers
=
sz
$
orbit
(
generators
n
)
[
0
]
(
Par
(
Many
[(
h
,
p
,
(
2
*
n
)
`
div
`
(
w
*
p
)
+
1
,
1
,
False
)
|
h
<-
workers
]))
where
w
=
length
workers
sz
(
_
,
mainStats
:
_
)
=
"False"
`
fromMaybe
`
(
"size"
`
lookup
`
mainStats
)
Makefile
View file @
7521e841
.PHONY
:
FORCE clean distclean
orbit
:
FORCE
ghc
--make
Master
.hs
-o
orbit
ghc
--make
Bench
.hs
-o
orbit
clean
:
$(RM)
*
.swp
*
~
*
.hi
*
.o
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment