Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Contribute to GitLab
Sign in
Toggle navigation
C
cpdt
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
research
cpdt
Commits
0d71505b
Commit
0d71505b
authored
Dec 16, 2009
by
Adam Chlipala
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Prosified Intensional
parent
2256d6ef
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
78 additions
and
16 deletions
+78
-16
Intensional.v
src/Intensional.v
+78
-16
No files found.
src/Intensional.v
View file @
0d71505b
...
@@ -18,6 +18,10 @@ Set Implicit Arguments.
...
@@ -18,6 +18,10 @@ Set Implicit Arguments.
(
**
%
\
chapter
{
Intensional
Transformations
}%
*
)
(
**
%
\
chapter
{
Intensional
Transformations
}%
*
)
(
**
The
essential
benefit
of
higher
-
order
encodings
is
that
variable
contexts
are
implicit
.
We
represent
the
object
language
'
s
contexts
within
the
meta
language
'
s
contexts
.
For
translations
like
CPS
conversion
,
this
is
a
clear
win
,
since
such
translations
do
not
need
to
keep
track
of
details
of
which
variables
are
available
.
Other
important
translations
,
including
closure
conversion
,
need
to
work
with
variables
as
first
-
class
,
analyzable
values
.
Another
example
is
conversion
from
PHOAS
terms
to
de
Bruijn
terms
.
The
output
format
makes
the
structure
of
variables
explicit
,
so
the
translation
requires
explicit
reasoning
about
variable
identity
.
In
this
chapter
,
we
implement
verified
translations
in
both
directions
between
last
chapter
'
s
PHOAS
language
and
a
de
Bruijn
version
of
it
.
Along
the
way
,
we
show
one
approach
to
avoiding
the
use
of
axioms
with
PHOAS
.
*
)
(
*
begin
hide
*
)
(
*
begin
hide
*
)
Inductive
type
:
Type
:=
Inductive
type
:
Type
:=
...
@@ -112,6 +116,8 @@ Module Phoas.
...
@@ -112,6 +116,8 @@ Module Phoas.
End
Phoas
.
End
Phoas
.
(
*
end
hide
*
)
(
*
end
hide
*
)
(
**
The
de
Bruijn
version
of
simply
-
typed
lambda
calculus
is
defined
in
a
manner
that
should
be
old
hat
by
now
.
*
)
Module
DeBruijn
.
Module
DeBruijn
.
Inductive
exp
:
list
type
->
type
->
Type
:=
Inductive
exp
:
list
type
->
type
->
Type
:=
|
Var
:
forall
G
t
,
|
Var
:
forall
G
t
,
...
@@ -148,6 +154,8 @@ Import Phoas DeBruijn.
...
@@ -148,6 +154,8 @@ Import Phoas DeBruijn.
(
**
*
From
De
Bruijn
to
PHOAS
*
)
(
**
*
From
De
Bruijn
to
PHOAS
*
)
(
**
The
heart
of
the
translation
into
PHOAS
is
this
function
[
phoasify
]
,
which
is
parameterized
by
an
[
hlist
]
that
represents
a
mapping
from
de
Bruijn
variables
to
PHOAS
variables
.
*
)
Section
phoasify
.
Section
phoasify
.
Variable
var
:
type
->
Type
.
Variable
var
:
type
->
Type
.
...
@@ -166,20 +174,37 @@ End phoasify.
...
@@ -166,20 +174,37 @@ End phoasify.
Definition
Phoasify
t
(
e
:
DeBruijn
.
exp
nil
t
)
:
Phoas
.
Exp
t
:=
Definition
Phoasify
t
(
e
:
DeBruijn
.
exp
nil
t
)
:
Phoas
.
Exp
t
:=
fun
_
=>
phoasify
e
HNil
.
fun
_
=>
phoasify
e
HNil
.
(
**
It
turns
out
to
be
trivial
to
establish
the
translation
'
s
soundness
.
*
)
Theorem
phoasify_sound
:
forall
G
t
(
e
:
DeBruijn
.
exp
G
t
)
s
,
Theorem
phoasify_sound
:
forall
G
t
(
e
:
DeBruijn
.
exp
G
t
)
s
,
Phoas
.
expDenote
(
phoasify
e
s
)
=
DeBruijn
.
expDenote
e
s
.
Phoas
.
expDenote
(
phoasify
e
s
)
=
DeBruijn
.
expDenote
e
s
.
induction
e
;
crush
;
ext_eq
;
crush
.
induction
e
;
crush
;
ext_eq
;
crush
.
Qed
.
Qed
.
(
**
We
can
prove
that
any
output
of
[
Phoasify
]
is
well
-
formed
,
in
a
sense
strong
enough
to
let
us
avoid
asserting
last
chapter
'
s
axiom
.
*
)
Print
Wf
.
(
**
%
\
vspace
{-
.15
in
}%
[[
Wf
=
fun
(
t
:
type
)
(
E
:
Exp
t
)
=>
forall
var1
var2
:
type
->
Type
,
exp_equiv
nil
(
E
var1
)
(
E
var2
)
:
forall
t
:
type
,
Exp
t
->
Prop
]]
*
)
Section
vars
.
Section
vars
.
Variables
var1
var2
:
type
->
Type
.
Variables
var1
var2
:
type
->
Type
.
Fixpoint
zip
G
(
s1
:
hlist
var1
G
)
:
hlist
var2
G
->
list
{
t
:
type
&
var1
t
*
var2
t
}%
type
:=
(
**
In
the
course
of
proving
well
-
formedness
,
we
will
need
to
translate
back
and
forth
between
the
de
Bruijn
and
PHOAS
representations
of
free
variable
information
.
The
function
[
zip
]
combines
two
de
Bruijn
substitutions
into
a
single
PHOAS
context
.
*
)
Fixpoint
zip
G
(
s1
:
hlist
var1
G
)
:
hlist
var2
G
->
list
{
t
:
type
&
var1
t
*
var2
t
}%
type
:=
match
s1
with
match
s1
with
|
HNil
=>
fun
_
=>
nil
|
HNil
=>
fun
_
=>
nil
|
HCons
_
_
v1
s1
'
=>
fun
s2
=>
existT
_
_
(
v1
,
hhd
s2
)
::
zip
s1
'
(
htl
s2
)
|
HCons
_
_
v1
s1
'
=>
fun
s2
=>
existT
_
_
(
v1
,
hhd
s2
)
::
zip
s1
'
(
htl
s2
)
end
.
end
.
(
**
Two
simple
lemmas
about
[
zip
]
will
make
useful
hints
.
*
)
Lemma
In_zip
:
forall
t
G
(
s1
:
hlist
_
G
)
s2
(
m
:
member
t
G
)
,
Lemma
In_zip
:
forall
t
G
(
s1
:
hlist
_
G
)
s2
(
m
:
member
t
G
)
,
In
(
existT
_
t
(
hget
s1
m
,
hget
s2
m
))
(
zip
s1
s2
)
.
In
(
existT
_
t
(
hget
s1
m
,
hget
s2
m
))
(
zip
s1
s2
)
.
induction
s1
;
intro
s2
;
dep_destruct
s2
;
intro
m
;
dep_destruct
m
;
crush
.
induction
s1
;
intro
s2
;
dep_destruct
s2
;
intro
m
;
dep_destruct
m
;
crush
.
...
@@ -194,7 +219,9 @@ Section vars.
...
@@ -194,7 +219,9 @@ Section vars.
Hint
Resolve
In_zip
unsimpl_zip
.
Hint
Resolve
In_zip
unsimpl_zip
.
Theorem
phoasify_wf
:
forall
G
t
(
e
:
DeBruijn
.
exp
G
t
)
s1
s2
,
(
**
Now
it
is
trivial
to
prove
the
main
inductive
lemma
about
well
-
formedness
.
*
)
Lemma
phoasify_wf
:
forall
G
t
(
e
:
DeBruijn
.
exp
G
t
)
s1
s2
,
exp_equiv
(
zip
s1
s2
)
(
phoasify
e
s1
)
(
phoasify
e
s2
)
.
exp_equiv
(
zip
s1
s2
)
(
phoasify
e
s1
)
(
phoasify
e
s2
)
.
Hint
Constructors
exp_equiv
.
Hint
Constructors
exp_equiv
.
...
@@ -202,23 +229,33 @@ Section vars.
...
@@ -202,23 +229,33 @@ Section vars.
Qed
.
Qed
.
End
vars
.
End
vars
.
(
**
We
apply
[
phoasify_wf
]
manually
to
prove
the
final
theorem
.
*
)
Theorem
Phoasify_wf
:
forall
t
(
e
:
DeBruijn
.
exp
nil
t
)
,
Theorem
Phoasify_wf
:
forall
t
(
e
:
DeBruijn
.
exp
nil
t
)
,
Wf
(
Phoasify
e
)
.
Wf
(
Phoasify
e
)
.
unfold
Wf
,
Phoasify
;
intros
;
unfold
Wf
,
Phoasify
;
intros
;
apply
(
phoasify_wf
e
(
HNil
(
B
:=
var1
))
(
HNil
(
B
:=
var2
)))
.
apply
(
phoasify_wf
e
(
HNil
(
B
:=
var1
))
(
HNil
(
B
:=
var2
)))
.
Qed
.
Qed
.
(
**
Now
,
if
we
compose
[
Phoasify
]
with
any
translation
over
PHOAS
terms
,
we
can
verify
the
composed
translation
without
relying
on
axioms
.
The
conclusion
of
[
Phoasify_wf
]
is
robustly
useful
in
verifying
a
wide
variety
of
translations
that
use
a
wide
variety
of
[
var
]
instantiations
.
*
)
(
**
*
From
PHOAS
to
De
Bruijn
*
)
(
**
*
From
PHOAS
to
De
Bruijn
*
)
Fixpoint
lookup
(
G
:
list
type
)
(
n
:
nat
)
:
option
type
:=
(
**
The
translation
to
de
Bruijn
terms
is
more
involved
.
We
will
essentially
be
instantiating
and
using
a
PHOAS
term
following
a
convention
isomorphic
to
%
\
textit
{%
#
<
i
>
#
de
Bruijn
levels
#
</
i
>
#
%}%,
which
are
different
from
the
de
Bruijn
indices
that
we
have
treated
so
far
.
With
levels
,
a
given
bound
variable
is
referred
to
by
the
same
number
at
each
of
its
occurrences
.
In
any
expression
,
the
binders
that
are
not
enclosed
by
other
binders
are
assigned
level
0
,
a
binder
with
just
one
enclosing
binder
is
assigned
level
1
,
and
so
on
.
The
uniformity
of
references
to
any
binder
will
be
critical
to
our
translation
,
since
it
is
compatible
with
the
pattern
of
filling
in
all
of
a
PHOAS
variable
'
s
locations
at
once
by
applying
a
function
.
match
G
with
We
implement
a
special
lookup
function
,
for
reading
a
numbered
variable
'
s
type
out
of
a
de
Bruijn
level
typing
context
.
The
last
variable
in
the
list
is
taken
to
have
level
0
,
the
next
-
to
-
last
level
1
,
and
so
on
.
*
)
Fixpoint
lookup
(
ts
:
list
type
)
(
n
:
nat
)
:
option
type
:=
match
ts
with
|
nil
=>
None
|
nil
=>
None
|
t
::
G
'
=>
if
eq_nat_dec
n
(
length
G
'
)
then
Some
t
else
lookup
G
'
n
|
t
::
ts
'
=>
if
eq_nat_dec
n
(
length
ts
'
)
then
Some
t
else
lookup
ts
'
n
end
.
end
.
Infix
"##"
:=
lookup
(
left
associativity
,
at
level
1
)
.
Infix
"##"
:=
lookup
(
left
associativity
,
at
level
1
)
.
(
**
With
[
lookup
]
,
we
can
define
a
notion
of
well
-
formedness
for
PHOAS
expressions
that
we
are
treating
according
to
the
de
Bruijn
level
convention
.
*
)
Fixpoint
wf
(
ts
:
list
type
)
t
(
e
:
Phoas
.
exp
(
fun
_
=>
nat
)
t
)
:
Prop
:=
Fixpoint
wf
(
ts
:
list
type
)
t
(
e
:
Phoas
.
exp
(
fun
_
=>
nat
)
t
)
:
Prop
:=
match
e
with
match
e
with
|
Phoas
.
Var
t
n
=>
ts
##
n
=
Some
t
|
Phoas
.
Var
t
n
=>
ts
##
n
=
Some
t
...
@@ -228,12 +265,18 @@ Fixpoint wf (ts : list type) t (e : Phoas.exp (fun _ => nat) t) : Prop :=
...
@@ -228,12 +265,18 @@ Fixpoint wf (ts : list type) t (e : Phoas.exp (fun _ => nat) t) : Prop :=
|
Phoas
.
Abs
t1
_
e1
=>
wf
(
t1
::
ts
)
(
e1
(
length
ts
))
|
Phoas
.
Abs
t1
_
e1
=>
wf
(
t1
::
ts
)
(
e1
(
length
ts
))
end
.
end
.
(
**
**
Connecting
Notions
of
Well
-
Formedness
*
)
(
**
Our
first
order
of
business
now
is
to
prove
that
any
well
-
formed
[
Exp
]
instantiates
to
a
well
-
formed
de
Bruijn
level
expression
.
We
start
by
characterizing
,
as
a
function
of
de
Bruijn
level
contexts
,
the
set
of
PHOAS
contexts
that
will
occur
in
the
proof
,
where
we
will
be
inducting
over
an
[
exp_equiv
]
derivation
.
*
)
Fixpoint
makeG
(
ts
:
list
type
)
:
list
{
t
:
type
&
nat
*
nat
}%
type
:=
Fixpoint
makeG
(
ts
:
list
type
)
:
list
{
t
:
type
&
nat
*
nat
}%
type
:=
match
ts
with
match
ts
with
|
nil
=>
nil
|
nil
=>
nil
|
t
::
ts
'
=>
existT
_
t
(
length
ts
'
,
length
ts
'
)
::
makeG
ts
'
|
t
::
ts
'
=>
existT
_
t
(
length
ts
'
,
length
ts
'
)
::
makeG
ts
'
end
.
end
.
(
**
Now
we
prove
a
connection
between
[
lookup
]
and
[
makeG
]
,
by
way
of
a
lemma
about
[
lookup
]
.
*
)
Opaque
eq_nat_dec
.
Opaque
eq_nat_dec
.
Hint
Extern
1
(
_
>=
_
)
=>
omega
.
Hint
Extern
1
(
_
>=
_
)
=>
omega
.
...
@@ -266,6 +309,8 @@ Qed.
...
@@ -266,6 +309,8 @@ Qed.
Hint
Resolve
lookup_In
.
Hint
Resolve
lookup_In
.
(
**
We
can
prove
the
main
inductive
lemma
by
induction
over
[
exp_equiv
]
derivations
.
*
)
Hint
Extern
1
(
_
::
_
=
makeG
(
_
::
_
))
=>
reflexivity
.
Hint
Extern
1
(
_
::
_
=
makeG
(
_
::
_
))
=>
reflexivity
.
Lemma
Wf_wf
'
:
forall
G
t
e1
(
e2
:
Phoas
.
exp
(
fun
_
=>
nat
)
t
)
,
Lemma
Wf_wf
'
:
forall
G
t
e1
(
e2
:
Phoas
.
exp
(
fun
_
=>
nat
)
t
)
,
...
@@ -281,6 +326,10 @@ Lemma Wf_wf : forall t (E : Exp t),
...
@@ -281,6 +326,10 @@ Lemma Wf_wf : forall t (E : Exp t),
intros
;
eapply
Wf_wf
'
;
eauto
.
intros
;
eapply
Wf_wf
'
;
eauto
.
Qed
.
Qed
.
(
**
**
The
Translation
*
)
(
**
Implementing
the
translation
itself
will
require
some
proofs
.
Our
main
function
[
dbify
]
will
take
[
wf
]
proofs
as
arguments
,
and
these
proofs
will
be
critical
to
constructing
de
Bruijn
index
terms
.
First
,
we
use
[
congruence
]
to
prove
two
basic
theorems
about
[
option
]
s
.
*
)
Theorem
None_Some
:
forall
T
(
x
:
T
)
,
Theorem
None_Some
:
forall
T
(
x
:
T
)
,
None
=
Some
x
None
=
Some
x
->
False
.
->
False
.
...
@@ -293,39 +342,47 @@ Theorem Some_Some : forall T (x y : T),
...
@@ -293,39 +342,47 @@ Theorem Some_Some : forall T (x y : T),
congruence
.
congruence
.
Qed
.
Qed
.
(
**
We
can
use
these
theorems
to
implement
[
makeVar
]
,
which
translates
a
proof
about
[
lookup
]
into
a
de
Bruijn
index
variable
with
a
closely
related
type
.
*
)
Fixpoint
makeVar
{
ts
n
t
}
:
ts
##
n
=
Some
t
->
member
t
ts
:=
Fixpoint
makeVar
{
ts
n
t
}
:
ts
##
n
=
Some
t
->
member
t
ts
:=
match
ts
return
ts
##
n
=
Some
t
->
member
t
ts
with
match
ts
with
|
nil
=>
fun
Heq
=>
match
None_Some
Heq
with
end
|
nil
=>
fun
Heq
=>
match
None_Some
Heq
with
end
|
t
'
::
ts
'
=>
if
eq_nat_dec
n
(
length
ts
'
)
as
b
|
t
'
::
ts
'
=>
if
eq_nat_dec
n
(
length
ts
'
)
as
b
return
(
if
b
then
_
else
_
)
=
_
->
_
return
(
if
b
then
Some
t
'
else
lookup
ts
'
n
)
=
Some
t
->
member
t
(
t
'
::
ts
'
)
then
fun
Heq
=>
match
Some_Some
Heq
with
refl_equal
=>
HFirst
end
then
fun
Heq
=>
match
Some_Some
Heq
in
_
=
t0
return
member
t0
(
t
'
::
ts
'
)
with
|
refl_equal
=>
HFirst
end
else
fun
Heq
=>
HNext
(
makeVar
Heq
)
else
fun
Heq
=>
HNext
(
makeVar
Heq
)
end
.
end
.
Axiom
cheat
:
forall
T
,
T
.
(
**
Now
[
dbify
]
is
straightforward
to
define
.
We
use
the
functions
[
proj1
]
and
[
proj2
]
to
decompose
proofs
of
conjunctions
.
*
)
Fixpoint
dbify
{
ts
}
t
(
e
:
Phoas
.
exp
(
fun
_
=>
nat
)
t
)
:
wf
ts
e
->
DeBruijn
.
exp
ts
t
:=
Fixpoint
dbify
{
ts
}
t
(
e
:
Phoas
.
exp
(
fun
_
=>
nat
)
t
)
:
wf
ts
e
->
DeBruijn
.
exp
ts
t
:=
match
e
in
Phoas
.
exp
_
t
return
wf
ts
e
->
DeBruijn
.
exp
ts
t
with
match
e
in
Phoas
.
exp
_
t
return
wf
ts
e
->
DeBruijn
.
exp
ts
t
with
|
Phoas
.
Var
_
n
=>
fun
wf
=>
DeBruijn
.
Var
(
makeVar
wf
)
|
Phoas
.
Var
_
n
=>
fun
wf
=>
DeBruijn
.
Var
(
makeVar
wf
)
|
Phoas
.
Const
n
=>
fun
_
=>
DeBruijn
.
Const
n
|
Phoas
.
Const
n
=>
fun
_
=>
DeBruijn
.
Const
n
|
Phoas
.
Plus
e1
e2
=>
fun
wf
=>
DeBruijn
.
Plus
(
dbify
e1
(
proj1
wf
))
(
dbify
e2
(
proj2
wf
))
|
Phoas
.
Plus
e1
e2
=>
fun
wf
=>
DeBruijn
.
Plus
(
dbify
e1
(
proj1
wf
))
(
dbify
e2
(
proj2
wf
))
|
Phoas
.
App
_
_
e1
e2
=>
fun
wf
=>
DeBruijn
.
App
(
dbify
e1
(
proj1
wf
))
(
dbify
e2
(
proj2
wf
))
|
Phoas
.
App
_
_
e1
e2
=>
fun
wf
=>
DeBruijn
.
App
(
dbify
e1
(
proj1
wf
))
(
dbify
e2
(
proj2
wf
))
|
Phoas
.
Abs
_
_
e1
=>
fun
wf
=>
DeBruijn
.
Abs
(
dbify
(
e1
(
length
ts
))
wf
)
|
Phoas
.
Abs
_
_
e1
=>
fun
wf
=>
DeBruijn
.
Abs
(
dbify
(
e1
(
length
ts
))
wf
)
end
.
end
.
(
**
We
define
the
parametric
translation
[
Dbify
]
by
appealing
to
the
well
-
formedness
translation
theorem
[
Wf_wf
]
that
we
proved
earlier
.
*
)
Definition
Dbify
t
(
E
:
Phoas
.
Exp
t
)
(
W
:
Wf
E
)
:
DeBruijn
.
exp
nil
t
:=
Definition
Dbify
t
(
E
:
Phoas
.
Exp
t
)
(
W
:
Wf
E
)
:
DeBruijn
.
exp
nil
t
:=
dbify
(
E
_
)
(
Wf_wf
W
)
.
dbify
(
E
_
)
(
Wf_wf
W
)
.
Fixpoint
makeG
'
ts
(
s
:
hlist
typeDenote
ts
)
:
list
{
t
:
type
&
nat
*
typeDenote
t
}%
type
:=
(
**
To
prove
soundness
,
it
is
helpful
to
classify
a
set
of
contexts
which
depends
on
a
de
Bruijn
index
substitution
.
*
)
Fixpoint
makeG
'
ts
(
s
:
hlist
typeDenote
ts
)
:
list
{
t
:
type
&
nat
*
typeDenote
t
}%
type
:=
match
s
with
match
s
with
|
HNil
=>
nil
|
HNil
=>
nil
|
HCons
_
ts
'
v
s
'
=>
existT
_
_
(
length
ts
'
,
v
)
::
makeG
'
s
'
|
HCons
_
ts
'
v
s
'
=>
existT
_
_
(
length
ts
'
,
v
)
::
makeG
'
s
'
end
.
end
.
(
**
We
prove
an
analogous
lemma
to
the
one
we
proved
connecting
[
makeG
]
and
[
lookup
]
.
This
time
,
we
connect
[
makeG
'
]
and
[
hget
]
.
*
)
Lemma
In_makeG
'_
contra
'
:
forall
t
v2
ts
(
s
:
hlist
_
ts
)
n
,
Lemma
In_makeG
'_
contra
'
:
forall
t
v2
ts
(
s
:
hlist
_
ts
)
n
,
In
(
existT
_
t
(
n
,
v2
))
(
makeG
'
s
)
In
(
existT
_
t
(
n
,
v2
))
(
makeG
'
s
)
->
n
>=
length
ts
->
n
>=
length
ts
...
@@ -349,12 +406,15 @@ Lemma In_makeG' : forall t v1 v2 ts s (w : ts ## v1 = Some t),
...
@@ -349,12 +406,15 @@ Lemma In_makeG' : forall t v1 v2 ts s (w : ts ## v1 = Some t),
|
[
|-
context
[
if
?
E
then
_
else
_
]
]
=>
destruct
E
;
crush
|
[
|-
context
[
if
?
E
then
_
else
_
]
]
=>
destruct
E
;
crush
end
;
end
;
repeat
match
goal
with
repeat
match
goal
with
|
[
|-
context
[
match
?
pf
with
refl_equal
=>
_
end
]
]
=>
rewrite
(
UIP_refl
_
_
pf
)
|
[
|-
context
[
match
?
pf
with
refl_equal
=>
_
end
]
]
=>
rewrite
(
UIP_refl
_
_
pf
)
end
;
crush
;
elimtype
False
;
eauto
.
end
;
crush
;
elimtype
False
;
eauto
.
Qed
.
Qed
.
Hint
Resolve
In_makeG
'
.
Hint
Resolve
In_makeG
'
.
(
**
Now
the
main
inductive
lemma
can
be
stated
and
proved
simply
.
*
)
Lemma
dbify_sound
:
forall
G
t
(
e1
:
Phoas
.
exp
_
t
)
(
e2
:
Phoas
.
exp
_
t
)
,
Lemma
dbify_sound
:
forall
G
t
(
e1
:
Phoas
.
exp
_
t
)
(
e2
:
Phoas
.
exp
_
t
)
,
exp_equiv
G
e1
e2
exp_equiv
G
e1
e2
->
forall
ts
(
w
:
wf
ts
e1
)
s
,
->
forall
ts
(
w
:
wf
ts
e1
)
s
,
...
@@ -363,6 +423,8 @@ Lemma dbify_sound : forall G t (e1 : Phoas.exp _ t) (e2 : Phoas.exp _ t),
...
@@ -363,6 +423,8 @@ Lemma dbify_sound : forall G t (e1 : Phoas.exp _ t) (e2 : Phoas.exp _ t),
induction
1
;
crush
;
ext_eq
;
crush
.
induction
1
;
crush
;
ext_eq
;
crush
.
Qed
.
Qed
.
(
**
In
the
usual
way
,
we
wrap
[
dbify_sound
]
into
the
final
soundness
theorem
,
formally
establishing
the
expressive
equivalence
of
PHOAS
and
de
Bruijn
index
terms
.
*
)
Theorem
Dbify_sound
:
forall
t
(
E
:
Exp
t
)
(
W
:
Wf
E
)
,
Theorem
Dbify_sound
:
forall
t
(
E
:
Exp
t
)
(
W
:
Wf
E
)
,
DeBruijn
.
expDenote
(
Dbify
W
)
HNil
=
Phoas
.
ExpDenote
E
.
DeBruijn
.
expDenote
(
Dbify
W
)
HNil
=
Phoas
.
ExpDenote
E
.
unfold
Dbify
,
Phoas
.
ExpDenote
;
intros
;
eapply
dbify_sound
;
eauto
.
unfold
Dbify
,
Phoas
.
ExpDenote
;
intros
;
eapply
dbify_sound
;
eauto
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment