Commit 22c2f4b7 authored by Adam Chlipala's avatar Adam Chlipala

Proved preservation for LocallyNameless

parent 4faa155a
......@@ -628,14 +628,14 @@ Module LocallyNameless.
end.
End open.
Inductive notFreeIn (x : free_var) : exp -> Prop :=
| NfConst : forall c, notFreeIn x (Const c)
| NfFreeVar : forall y, y <> x -> notFreeIn x (FreeVar y)
| NfBoundVar : forall y, notFreeIn x (BoundVar y)
| NfApp : forall e1 e2, notFreeIn x e1 -> notFreeIn x e2 -> notFreeIn x (App e1 e2)
| NfAbs : forall e1, (forall y, y <> x -> notFreeIn x (open y O e1)) -> notFreeIn x (Abs e1).
Hint Constructors notFreeIn.
Fixpoint freeVars (e : exp) : list free_var :=
match e with
| Const _ => nil
| FreeVar x => x :: nil
| BoundVar _ => nil
| App e1 e2 => freeVars e1 ++ freeVars e2
| Abs e1 => freeVars e1
end.
Inductive hasType : ctx -> exp -> type -> Prop :=
| TConst : forall G b,
......@@ -647,38 +647,133 @@ Module LocallyNameless.
G |-e e1 : dom --> ran
-> G |-e e2 : dom
-> G |-e App e1 e2 : ran
| TAbs : forall G e' dom ran,
(forall x, notFreeIn x e' -> (x, dom) :: G |-e open x O e' : ran)
| TAbs : forall G e' dom ran L,
(forall x, ~In x L -> (x, dom) :: G |-e open x O e' : ran)
-> G |-e Abs e' : dom --> ran
where "G |-e e : t" := (hasType G e t).
Hint Constructors hasType.
(** We prove roughly the same weakening theorems as before. *)
Lemma lookup_push : forall G G' x t x' t',
(forall x t, G |-v x : t -> G' |-v x : t)
-> (x, t) :: G |-v x' : t'
-> (x, t) :: G' |-v x' : t'.
inversion 2; crush.
Qed.
Lemma weaken_lookup : forall G' v t G,
G |-v v : t
-> G ++ G' |-v v : t.
Hint Resolve lookup_push.
Theorem weaken_hasType : forall G e t,
G |-e e : t
-> forall G', (forall x t, G |-v x : t -> G' |-v x : t)
-> G' |-e e : t.
induction 1; crush; eauto.
Qed.
Hint Resolve weaken_hasType.
Inductive lclosed : nat -> exp -> Prop :=
| CConst : forall n b, lclosed n (Const b)
| CFreeVar : forall n v, lclosed n (FreeVar v)
| CBoundVar : forall n v, v < n -> lclosed n (BoundVar v)
| CApp : forall n e1 e2, lclosed n e1 -> lclosed n e2 -> lclosed n (App e1 e2)
| CAbs : forall n e1, lclosed (S n) e1 -> lclosed n (Abs e1).
Hint Constructors lclosed.
Lemma lclosed_S : forall x e n,
lclosed n (open x n e)
-> lclosed (S n) e.
induction e; inversion 1; crush;
repeat (match goal with
| [ _ : context[if ?E then _ else _] |- _ ] => destruct E
end; crush).
Qed.
Hint Resolve lclosed_S.
Lemma lclosed_weaken : forall n e,
lclosed n e
-> forall n', n' >= n
-> lclosed n' e.
induction 1; crush.
Qed.
Hint Resolve weaken_lookup.
Hint Resolve lclosed_weaken.
Hint Extern 1 (_ >= _) => omega.
Theorem weaken_hasType' : forall G' G e t,
Open Scope string_scope.
Fixpoint primes (n : nat) : string :=
match n with
| O => "x"
| S n' => primes n' ++ "'"
end.
Check fold_left.
Fixpoint sumLengths (L : list free_var) : nat :=
match L with
| nil => O
| x :: L' => String.length x + sumLengths L'
end.
Definition fresh (L : list free_var) := primes (sumLengths L).
Theorem freshOk' : forall x L, String.length x > sumLengths L
-> ~In x L.
induction L; crush.
Qed.
Lemma length_app : forall s2 s1, String.length (s1 ++ s2) = String.length s1 + String.length s2.
induction s1; crush.
Qed.
Hint Rewrite length_app : cpdt.
Lemma length_primes : forall n, String.length (primes n) = S n.
induction n; crush.
Qed.
Hint Rewrite length_primes : cpdt.
Theorem freshOk : forall L, ~In (fresh L) L.
intros; apply freshOk'; unfold fresh; crush.
Qed.
Hint Resolve freshOk.
Lemma hasType_lclosed : forall G e t,
G |-e e : t
-> G ++ G' |-e e : t.
induction 1; crush; eauto.
-> lclosed O e.
induction 1; eauto.
Qed.
Theorem weaken_hasType : forall e t,
nil |-e e : t
-> forall G', G' |-e e : t.
intros; change G' with (nil ++ G');
eapply weaken_hasType'; eauto.
Lemma lclosed_open : forall n e, lclosed n e
-> forall x, open x n e = e.
induction 1; crush;
repeat (match goal with
| [ |- context[if ?E then _ else _] ] => destruct E
end; crush).
Qed.
Hint Resolve weaken_hasType.
Hint Resolve lclosed_open hasType_lclosed.
Open Scope list_scope.
Lemma In_app1 : forall T (x : T) ls2 ls1,
In x ls1
-> In x (ls1 ++ ls2).
induction ls1; crush.
Qed.
Lemma In_app2 : forall T (x : T) ls2 ls1,
In x ls2
-> In x (ls1 ++ ls2).
induction ls1; crush.
Qed.
Hint Resolve In_app1 In_app2.
Section subst.
Variable x : free_var.
......@@ -692,125 +787,140 @@ Module LocallyNameless.
| App e1 e2 => App (subst e1) (subst e2)
| Abs e' => Abs (subst e')
end.
End subst.
Notation "[ x ~> e1 ] e2" := (subst x e1 e2) (no associativity, at level 80).
Inductive val : exp -> Prop :=
| VConst : forall b, val (Const b)
| VAbs : forall e, val (Abs e).
Hint Constructors val.
Variable xt : type.
Reserved Notation "e1 ==> e2" (no associativity, at level 90).
Definition disj x (G : ctx) := In x (map (@fst _ _) G) -> False.
Infix "#" := disj (no associativity, at level 90).
Inductive step : exp -> exp -> Prop :=
| Beta : forall x e1 e2,
val e2
-> notFreeIn x e1
-> App (Abs e1) e2 ==> [x ~> e2] (open x O e1)
| Cong1 : forall e1 e2 e1',
e1 ==> e1'
-> App e1 e2 ==> App e1' e2
| Cong2 : forall e1 e2 e2',
val e1
-> e2 ==> e2'
-> App e1 e2 ==> App e1 e2'
Lemma lookup_disj' : forall t G1,
G1 |-v x : t
-> forall G, x # G
-> G1 = G ++ (x, xt) :: nil
-> t = xt.
unfold disj; induction 1; crush;
match goal with
| [ _ : _ :: _ = ?G0 ++ _ |- _ ] => destruct G0
end; crush; eauto.
Qed.
where "e1 ==> e2" := (step e1 e2).
Lemma lookup_disj : forall t G,
x # G
-> G ++ (x, xt) :: nil |-v x : t
-> t = xt.
intros; eapply lookup_disj'; eauto.
Qed.
Hint Constructors step.
Lemma lookup_ne' : forall G1 v t,
G1 |-v v : t
-> forall G, G1 = G ++ (x, xt) :: nil
-> v <> x
-> G |-v v : t.
induction 1; crush;
match goal with
| [ _ : _ :: _ = ?G0 ++ _ |- _ ] => destruct G0
end; crush.
Qed.
Open Scope string_scope.
Lemma lookup_ne : forall G v t,
G ++ (x, xt) :: nil |-v v : t
-> v <> x
-> G |-v v : t.
intros; eapply lookup_ne'; eauto.
Qed.
Fixpoint vlen (e : exp) : nat :=
match e with
| Const _ => 0
| FreeVar x => String.length x
| BoundVar _ => 0
| App e1 e2 => vlen e1 + vlen e2
| Abs e1 => vlen e1
Hint Extern 1 (_ |-e _ : _) =>
match goal with
| [ H1 : _, H2 : _ |- _ ] => rewrite (lookup_disj H1 H2)
end.
Opaque le_lt_dec.
Hint Resolve lookup_ne.
Hint Extern 1 (@eq exp _ _) => f_equal.
Lemma open_comm : forall x1 x2 e n1 n2,
open x1 n1 (open x2 (S n2 + n1) e)
= open x2 (n2 + n1) (open x1 n1 e).
induction e; crush;
Lemma open_subst : forall x0 e' n,
lclosed n e1
-> x <> x0
-> open x0 n (subst e') = subst (open x0 n e').
induction e'; crush;
repeat (match goal with
| [ |- context[if ?E then _ else _] ] => destruct E
end; crush).
replace (S (n2 + n1)) with (n2 + S n1); auto.
end; crush); eauto 6.
Qed.
Hint Rewrite plus_0_r : cpdt.
Hint Rewrite open_subst : cpdt.
Lemma open_comm0 : forall x1 x2 e n,
open x1 0 (open x2 (S n) e)
= open x2 n (open x1 0 e).
intros; generalize (open_comm x1 x2 e 0 n); crush.
Lemma disj_push : forall x0 (t : type) G,
x # G
-> x <> x0
-> x # (x0, t) :: G.
unfold disj; crush.
Qed.
Hint Extern 1 (notFreeIn _ (open _ 0 (open _ (S _) _))) => rewrite open_comm0.
Hint Immediate disj_push.
Lemma notFreeIn_open : forall x y,
x <> y
-> forall e,
notFreeIn x e
-> forall n, notFreeIn x (open y n e).
induction 2; crush;
repeat (match goal with
| [ |- context[if ?E then _ else _] ] => destruct E
end; crush).
Lemma lookup_cons : forall x0 dom G x1 t,
G |-v x1 : t
-> x0 # G
-> (x0, dom) :: G |-v x1 : t.
unfold disj; induction 1; crush;
match goal with
| [ H : _ |-v _ : _ |- _ ] => inversion H
end; crush.
Qed.
Hint Resolve notFreeIn_open.
Hint Resolve lookup_cons.
Hint Unfold disj.
Lemma infVar : forall x y, String.length x > String.length y
-> y <> x.
intros; destruct (string_dec x y); intros; subst; crush.
Qed.
Lemma hasType_subst' : forall G1 e t,
G1 |-e e : t
-> forall G, G1 = G ++ (x, xt) :: nil
-> x # G
-> G |-e e1 : xt
-> G |-e subst e : t.
induction 1; crush; eauto.
Hint Resolve infVar.
destruct (string_dec v x); crush.
Lemma inf' : forall x e, String.length x > vlen e -> notFreeIn x e.
induction e; crush; eauto.
apply TAbs with (x :: L ++ map (@fst _ _) G0); crush; eauto 7.
apply H0; eauto 6.
Qed.
Fixpoint primes (n : nat) : string :=
match n with
| O => "x"
| S n' => primes n' ++ "'"
end.
Lemma length_app : forall s2 s1, String.length (s1 ++ s2) = String.length s1 + String.length s2.
induction s1; crush.
Theorem hasType_subst : forall e t,
(x, xt) :: nil |-e e : t
-> nil |-e e1 : xt
-> nil |-e subst e : t.
intros; eapply hasType_subst'; eauto.
Qed.
End subst.
Hint Rewrite length_app : cpdt.
Hint Resolve hasType_subst.
Lemma length_primes : forall n, String.length (primes n) = S n.
induction n; crush.
Qed.
Notation "[ x ~> e1 ] e2" := (subst x e1 e2) (no associativity, at level 60).
Hint Rewrite length_primes : cpdt.
Inductive val : exp -> Prop :=
| VConst : forall b, val (Const b)
| VAbs : forall e, val (Abs e).
Lemma inf : forall e, exists x, notFreeIn x e.
intro; exists (primes (vlen e)); apply inf'; crush.
Qed.
Hint Constructors val.
Reserved Notation "e1 ==> e2" (no associativity, at level 90).
Lemma progress_Abs : forall e1 e2,
Inductive step : exp -> exp -> Prop :=
| Beta : forall e1 e2 x,
val e2
-> exists e', App (Abs e1) e2 ==> e'.
intros; destruct (inf e1); eauto.
Qed.
-> ~In x (freeVars e1)
-> App (Abs e1) e2 ==> [x ~> e2] (open x O e1)
| Cong1 : forall e1 e2 e1',
e1 ==> e1'
-> App e1 e2 ==> App e1' e2
| Cong2 : forall e1 e2 e2',
val e1
-> e2 ==> e2'
-> App e1 e2 ==> App e1 e2'
Hint Resolve progress_Abs.
where "e1 ==> e2" := (step e1 e2).
Hint Constructors step.
Lemma progress' : forall G e t, G |-e e : t
-> G = nil
......@@ -829,7 +939,29 @@ Module LocallyNameless.
intros; eapply progress'; eauto.
Qed.
(*Lemma preservation' : forall G e t, G |-e e : t
Lemma alpha_open : forall x1 x2 e1 e2 n,
~In x1 (freeVars e2)
-> ~In x2 (freeVars e2)
-> [x1 ~> e1](open x1 n e2) = [x2 ~> e1](open x2 n e2).
induction e2; crush;
repeat (match goal with
| [ |- context[if ?E then _ else _] ] => destruct E
end; crush).
Qed.
Lemma freshOk_app1 : forall L1 L2,
~ In (fresh (L1 ++ L2)) L1.
intros; generalize (freshOk (L1 ++ L2)); crush.
Qed.
Lemma freshOk_app2 : forall L1 L2,
~ In (fresh (L1 ++ L2)) L2.
intros; generalize (freshOk (L1 ++ L2)); crush.
Qed.
Hint Resolve freshOk_app1 freshOk_app2.
Lemma preservation' : forall G e t, G |-e e : t
-> G = nil
-> forall e', e ==> e'
-> nil |-e e' : t.
......@@ -837,12 +969,14 @@ Module LocallyNameless.
match goal with
| [ H : _ |-e Abs _ : _ |- _ ] => inversion H
end; eauto.
rewrite (alpha_open x (fresh (L ++ freeVars e0))); eauto.
Qed.
Theorem preservation : forall e t, nil |-e e : t
-> forall e', e ==> e'
-> nil |-e e' : t.
intros; eapply preservation'; eauto.
Qed.*)
Qed.
End LocallyNameless.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment