Commit 37c33f23 authored by Adam Chlipala's avatar Adam Chlipala

PSLC

parent d4aba46f
......@@ -61,7 +61,7 @@ Module STLC.
Notation "# v" := (Var v) (at level 70).
Notation "^ n" := (Const n) (at level 70).
Infix "++" := Plus.
Infix "+^" := Plus (left associativity, at level 79).
Infix "@" := App (left associativity, at level 77).
Notation "\ x , e" := (Abs (fun x => e)) (at level 78).
......@@ -99,7 +99,7 @@ Module STLC.
let e2' := cfold e2 in
match e1', e2' with
| Const n1, Const n2 => ^(n1 + n2)
| _, _ => e1' ++ e2'
| _, _ => e1' +^ e2'
end
| App _ _ e1 e2 => cfold e1 @ cfold e2
......@@ -122,3 +122,166 @@ Module STLC.
unfold ExpDenote, Cfold; intros; apply cfold_correct.
Qed.
End STLC.
(** * Adding Products and Sums *)
Module PSLC.
Inductive type : Type :=
| Nat : type
| Arrow : type -> type -> type
| Prod : type -> type -> type
| Sum : type -> type -> type.
Infix "-->" := Arrow (right associativity, at level 62).
Infix "**" := Prod (right associativity, at level 61).
Infix "++" := Sum (right associativity, at level 60).
Section vars.
Variable var : type -> Type.
Inductive exp : type -> Type :=
| Var : forall t,
var t
-> exp t
| Const : nat -> exp Nat
| Plus : exp Nat -> exp Nat -> exp Nat
| App : forall t1 t2,
exp (t1 --> t2)
-> exp t1
-> exp t2
| Abs : forall t1 t2,
(var t1 -> exp t2)
-> exp (t1 --> t2)
| Pair : forall t1 t2,
exp t1
-> exp t2
-> exp (t1 ** t2)
| Fst : forall t1 t2,
exp (t1 ** t2)
-> exp t1
| Snd : forall t1 t2,
exp (t1 ** t2)
-> exp t2
| Inl : forall t1 t2,
exp t1
-> exp (t1 ++ t2)
| Inr : forall t1 t2,
exp t2
-> exp (t1 ++ t2)
| SumCase : forall t1 t2 t,
exp (t1 ++ t2)
-> (var t1 -> exp t)
-> (var t2 -> exp t)
-> exp t.
End vars.
Definition Exp t := forall var, exp var t.
Implicit Arguments Var [var t].
Implicit Arguments Const [var].
Implicit Arguments Abs [var t1 t2].
Implicit Arguments Inl [var t1 t2].
Implicit Arguments Inr [var t1 t2].
Notation "# v" := (Var v) (at level 70).
Notation "^ n" := (Const n) (at level 70).
Infix "+^" := Plus (left associativity, at level 79).
Infix "@" := App (left associativity, at level 77).
Notation "\ x , e" := (Abs (fun x => e)) (at level 78).
Notation "\ ! , e" := (Abs (fun _ => e)) (at level 78).
Notation "[ e1 , e2 ]" := (Pair e1 e2).
Notation "#1 e" := (Fst e) (at level 75).
Notation "#2 e" := (Snd e) (at level 75).
Notation "'case' e 'of' x => e1 | y => e2" := (SumCase e (fun x => e1) (fun y => e2))
(at level 79).
Fixpoint typeDenote (t : type) : Set :=
match t with
| Nat => nat
| t1 --> t2 => typeDenote t1 -> typeDenote t2
| t1 ** t2 => typeDenote t1 * typeDenote t2
| t1 ++ t2 => typeDenote t1 + typeDenote t2
end%type.
Fixpoint expDenote t (e : exp typeDenote t) {struct e} : typeDenote t :=
match e in (exp _ t) return (typeDenote t) with
| Var _ v => v
| Const n => n
| Plus e1 e2 => expDenote e1 + expDenote e2
| App _ _ e1 e2 => (expDenote e1) (expDenote e2)
| Abs _ _ e' => fun x => expDenote (e' x)
| Pair _ _ e1 e2 => (expDenote e1, expDenote e2)
| Fst _ _ e' => fst (expDenote e')
| Snd _ _ e' => snd (expDenote e')
| Inl _ _ e' => inl _ (expDenote e')
| Inr _ _ e' => inr _ (expDenote e')
| SumCase _ _ _ e' e1 e2 =>
match expDenote e' with
| inl v => expDenote (e1 v)
| inr v => expDenote (e2 v)
end
end.
Definition ExpDenote t (e : Exp t) := expDenote (e _).
Section cfold.
Variable var : type -> Type.
Fixpoint cfold t (e : exp var t) {struct e} : exp var t :=
match e in exp _ t return exp _ t with
| Var _ v => #v
| Const n => ^n
| Plus e1 e2 =>
let e1' := cfold e1 in
let e2' := cfold e2 in
match e1', e2' with
| Const n1, Const n2 => ^(n1 + n2)
| _, _ => e1' +^ e2'
end
| App _ _ e1 e2 => cfold e1 @ cfold e2
| Abs _ _ e' => Abs (fun x => cfold (e' x))
| Pair _ _ e1 e2 => [cfold e1, cfold e2]
| Fst _ _ e' => #1 (cfold e')
| Snd _ _ e' => #2 (cfold e')
| Inl _ _ e' => Inl (cfold e')
| Inr _ _ e' => Inr (cfold e')
| SumCase _ _ _ e' e1 e2 =>
case cfold e' of
x => cfold (e1 x)
| y => cfold (e2 y)
end.
End cfold.
Definition Cfold t (E : Exp t) : Exp t := fun _ => cfold (E _).
Lemma cfold_correct : forall t (e : exp _ t),
expDenote (cfold e) = expDenote e.
induction e; crush; try (ext_eq; crush);
repeat (match goal with
| [ |- context[cfold ?E] ] => dep_destruct (cfold E)
| [ |- match ?E with inl _ => _ | inr _ => _ end = _ ] => destruct E
end; crush).
Qed.
Theorem Cfold_correct : forall t (E : Exp t),
ExpDenote (Cfold E) = ExpDenote E.
unfold ExpDenote, Cfold; intros; apply cfold_correct.
Qed.
End PSLC.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment