Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Contribute to GitLab
Sign in
Toggle navigation
C
cpdt
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
research
cpdt
Commits
3a9f31ab
Commit
3a9f31ab
authored
Oct 14, 2008
by
Adam Chlipala
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Code for cond-folding example
parent
5de46602
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
174 additions
and
1 deletion
+174
-1
DataStruct.v
src/DataStruct.v
+174
-1
No files found.
src/DataStruct.v
View file @
3a9f31ab
...
...
@@ -8,7 +8,7 @@
*
)
(
*
begin
hide
*
)
Require
Import
List
.
Require
Import
Arith
List
.
Require
Import
Tactics
.
...
...
@@ -419,6 +419,8 @@ Inductive eq (A : Type) (x : A) : A -> Prop := refl_equal : x = x
In
a
proposition
[
x
=
y
]
,
we
see
that
[
x
]
is
a
parameter
and
[
y
]
is
a
regular
argument
.
The
type
of
the
constructor
[
refl_equal
]
shows
that
[
y
]
can
only
ever
be
instantiated
to
[
x
]
.
Thus
,
within
a
pattern
-
match
with
[
refl_equal
]
,
occurrences
of
[
y
]
can
be
replaced
with
occurrences
of
[
x
]
for
typing
purposes
.
All
examples
of
similar
dependent
pattern
matching
that
we
have
seen
before
require
explicit
annotations
,
but
Coq
implements
a
special
case
of
annotation
inference
for
matches
on
equality
proofs
.
*
)
End
fhlist
.
Implicit
Arguments
fhget
[
A
B
elm
ls
]
.
(
**
*
Data
Structures
as
Index
Functions
*
)
...
...
@@ -570,3 +572,174 @@ Theorem sum_inc : forall t, sum (inc t) >= sum t.
Qed
.
(
**
Even
if
Coq
would
generate
complete
induction
principles
automatically
for
nested
inductive
definitions
like
the
one
we
started
with
,
there
would
still
be
advantages
to
using
this
style
of
reflexive
encoding
.
We
see
one
of
those
advantages
in
the
definition
of
[
inc
]
,
where
we
did
not
need
to
use
any
kind
of
auxiliary
function
.
In
general
,
reflexive
encodings
often
admit
direct
implementations
of
operations
that
would
require
recursion
if
performed
with
more
traditional
inductive
data
structures
.
*
)
(
**
**
Another
Interpreter
Example
*
)
Inductive
type
'
:
Type
:=
|
Nat
'
:
type
'
|
Bool
'
:
type
'
.
Inductive
exp
'
:
type
'
->
Type
:=
|
NConst
:
nat
->
exp
'
Nat
'
|
Plus
:
exp
'
Nat
'
->
exp
'
Nat
'
->
exp
'
Nat
'
|
Eq
:
exp
'
Nat
'
->
exp
'
Nat
'
->
exp
'
Bool
'
|
BConst
:
bool
->
exp
'
Bool
'
|
Cond
:
forall
n
t
,
(
findex
n
->
exp
'
Bool
'
)
->
(
findex
n
->
exp
'
t
)
->
exp
'
t
->
exp
'
t
.
Definition
type
'
Denote
(
t
:
type
'
)
:
Set
:=
match
t
with
|
Nat
'
=>
nat
|
Bool
'
=>
bool
end
.
Section
cond
.
Variable
A
:
Set
.
Variable
default
:
A
.
Fixpoint
cond
(
n
:
nat
)
:
(
findex
n
->
bool
)
->
(
findex
n
->
A
)
->
A
:=
match
n
return
(
findex
n
->
bool
)
->
(
findex
n
->
A
)
->
A
with
|
O
=>
fun
_
_
=>
default
|
S
n
'
=>
fun
tests
bodies
=>
if
tests
None
then
bodies
None
else
cond
n
'
(
fun
idx
=>
tests
(
Some
idx
))
(
fun
idx
=>
bodies
(
Some
idx
))
end
.
End
cond
.
Implicit
Arguments
cond
[
A
n
]
.
Fixpoint
exp
'
Denote
t
(
e
:
exp
'
t
)
{
struct
e
}
:
type
'
Denote
t
:=
match
e
in
exp
'
t
return
type
'
Denote
t
with
|
NConst
n
=>
n
|
Plus
e1
e2
=>
exp
'
Denote
e1
+
exp
'
Denote
e2
|
Eq
e1
e2
=>
if
eq_nat_dec
(
exp
'
Denote
e1
)
(
exp
'
Denote
e2
)
then
true
else
false
|
BConst
b
=>
b
|
Cond
_
_
tests
bodies
default
=>
cond
(
exp
'
Denote
default
)
(
fun
idx
=>
exp
'
Denote
(
tests
idx
))
(
fun
idx
=>
exp
'
Denote
(
bodies
idx
))
end
.
Section
cfoldCond
.
Variable
t
:
type
'
.
Variable
default
:
exp
'
t
.
Fixpoint
cfoldCond
(
n
:
nat
)
:
(
findex
n
->
exp
'
Bool
'
)
->
(
findex
n
->
exp
'
t
)
->
exp
'
t
:=
match
n
return
(
findex
n
->
exp
'
Bool
'
)
->
(
findex
n
->
exp
'
t
)
->
exp
'
t
with
|
O
=>
fun
_
_
=>
default
|
S
n
'
=>
fun
tests
bodies
=>
match
tests
None
with
|
BConst
true
=>
bodies
None
|
BConst
false
=>
cfoldCond
n
'
(
fun
idx
=>
tests
(
Some
idx
))
(
fun
idx
=>
bodies
(
Some
idx
))
|
_
=>
let
e
:=
cfoldCond
n
'
(
fun
idx
=>
tests
(
Some
idx
))
(
fun
idx
=>
bodies
(
Some
idx
))
in
match
e
in
exp
'
t
return
exp
'
Bool
'
->
exp
'
t
->
exp
'
t
with
|
Cond
n
_
tests
'
bodies
'
default
'
=>
fun
test
body
=>
Cond
(
S
n
)
(
fun
idx
=>
match
idx
with
|
None
=>
test
|
Some
idx
=>
tests
'
idx
end
)
(
fun
idx
=>
match
idx
with
|
None
=>
body
|
Some
idx
=>
bodies
'
idx
end
)
default
'
|
e
=>
fun
test
body
=>
Cond
1
(
fun
_
=>
test
)
(
fun
_
=>
body
)
e
end
(
tests
None
)
(
bodies
None
)
end
end
.
End
cfoldCond
.
Implicit
Arguments
cfoldCond
[
t
n
]
.
Fixpoint
cfold
t
(
e
:
exp
'
t
)
{
struct
e
}
:
exp
'
t
:=
match
e
in
exp
'
t
return
exp
'
t
with
|
NConst
n
=>
NConst
n
|
Plus
e1
e2
=>
let
e1
'
:=
cfold
e1
in
let
e2
'
:=
cfold
e2
in
match
e1
'
,
e2
'
with
|
NConst
n1
,
NConst
n2
=>
NConst
(
n1
+
n2
)
|
_
,
_
=>
Plus
e1
'
e2
'
end
|
Eq
e1
e2
=>
let
e1
'
:=
cfold
e1
in
let
e2
'
:=
cfold
e2
in
match
e1
'
,
e2
'
with
|
NConst
n1
,
NConst
n2
=>
BConst
(
if
eq_nat_dec
n1
n2
then
true
else
false
)
|
_
,
_
=>
Eq
e1
'
e2
'
end
|
BConst
b
=>
BConst
b
|
Cond
_
_
tests
bodies
default
=>
cfoldCond
(
cfold
default
)
(
fun
idx
=>
cfold
(
tests
idx
))
(
fun
idx
=>
cfold
(
bodies
idx
))
end
.
Lemma
cfoldCond_correct
:
forall
t
(
default
:
exp
'
t
)
n
(
tests
:
findex
n
->
exp
'
Bool
'
)
(
bodies
:
findex
n
->
exp
'
t
)
,
exp
'
Denote
(
cfoldCond
default
tests
bodies
)
=
exp
'
Denote
(
Cond
n
tests
bodies
default
)
.
induction
n
;
crush
;
match
goal
with
|
[
IHn
:
forall
tests
bodies
,
_
,
tests
:
_
->
_
,
bodies
:
_
->
_
|-
_
]
=>
generalize
(
IHn
(
fun
idx
=>
tests
(
Some
idx
))
(
fun
idx
=>
bodies
(
Some
idx
)))
;
clear
IHn
;
intro
IHn
end
;
repeat
(
match
goal
with
|
[
|-
context
[
match
?
E
with
|
NConst
_
=>
_
|
Plus
_
_
=>
_
|
Eq
_
_
=>
_
|
BConst
_
=>
_
|
Cond
_
_
_
_
_
=>
_
end
]
]
=>
dep_destruct
E
|
[
|-
context
[
if
?
B
then
_
else
_
]
]
=>
destruct
B
end
;
crush
)
.
Qed
.
Lemma
cond_ext
:
forall
(
A
:
Set
)
(
default
:
A
)
n
(
tests
tests
'
:
findex
n
->
bool
)
(
bodies
bodies
'
:
findex
n
->
A
)
,
(
forall
idx
,
tests
idx
=
tests
'
idx
)
->
(
forall
idx
,
bodies
idx
=
bodies
'
idx
)
->
cond
default
tests
bodies
=
cond
default
tests
'
bodies
'
.
induction
n
;
crush
;
match
goal
with
|
[
|-
context
[
if
?
E
then
_
else
_
]
]
=>
destruct
E
end
;
crush
.
Qed
.
Theorem
cfold_correct
:
forall
t
(
e
:
exp
'
t
)
,
exp
'
Denote
(
cfold
e
)
=
exp
'
Denote
e
.
Hint
Rewrite
cfoldCond_correct
:
cpdt
.
Hint
Resolve
cond_ext
.
induction
e
;
crush
;
repeat
(
match
goal
with
|
[
|-
context
[
cfold
?
E
]
]
=>
dep_destruct
(
cfold
E
)
end
;
crush
)
.
Qed
.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment