Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Contribute to GitLab
Sign in
Toggle navigation
C
cpdt
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
research
cpdt
Commits
402e0cca
Commit
402e0cca
authored
Nov 16, 2008
by
Adam Chlipala
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
About to stop using JMeq
parent
4a19cacf
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
150 additions
and
216 deletions
+150
-216
Intensional.v
src/Intensional.v
+141
-208
Tactics.v
src/Tactics.v
+9
-8
No files found.
src/Intensional.v
View file @
402e0cca
...
...
@@ -8,14 +8,18 @@
*
)
(
*
begin
hide
*
)
Require
Import
Arith
Bool
String
List
.
Require
Import
Arith
Bool
String
List
Eqdep
JMeq
.
Require
Import
Axioms
Tactics
DepList
.
Set
Implicit
Arguments
.
Infix
"=="
:=
JMeq
(
at
level
70
,
no
associativity
)
.
(
*
end
hide
*
)
(
**
%
\
chapter
{
Intensional
Transformations
}%
*
)
(
**
TODO
:
Prose
for
this
chapter
*
)
...
...
@@ -797,292 +801,221 @@ Implicit Arguments unpackExp [var t envT fvs].
Implicit
Arguments
ccExp
[
var
t
envT
]
.
Fixpoint
map_funcs
var
result
T1
T2
(
f
:
T1
->
T2
)
(
fs
:
cfuncs
var
result
T1
)
{
struct
fs
}
:
cfuncs
var
result
T2
:=
Fixpoint
map_funcs
var
T1
T2
(
f
:
T1
->
T2
)
(
fs
:
funcs
var
T1
)
{
struct
fs
}
:
funcs
var
T2
:=
match
fs
with
|
CMain
v
=>
C
Main
(
f
v
)
|
CAbs
_
_
e
fs
'
=>
C
Abs
e
(
fun
x
=>
map_funcs
f
(
fs
'
x
))
|
Main
v
=>
Main
(
f
v
)
|
Abs
_
_
_
e
fs
'
=>
Abs
e
(
fun
x
=>
map_funcs
f
(
fs
'
x
))
end
.
Definition
CcTerm
'
result
(
E
:
Pterm
result
)
(
Hwf
:
wfTerm
(
envT
:=
nil
)
tt
(
E
_
))
:
Cprog
result
:=
fun
_
=>
map_funcs
(
fun
f
=>
f
tt
)
(
cc
Term
(
E
_
)
(
envT
:=
nil
)
tt
Hwf
)
.
Definition
CcTerm
'
t
(
E
:
Source
.
Exp
t
)
(
Hwf
:
wfExp
(
envT
:=
nil
)
tt
(
E
_
))
:
Prog
(
ccType
t
)
:=
fun
_
=>
map_funcs
(
fun
f
=>
f
tt
)
(
cc
Exp
(
E
_
)
(
envT
:=
nil
)
tt
Hwf
)
.
(
**
*
Correctness
*
)
Scheme
pterm_equiv_mut
:=
Minimality
for
pterm_equiv
Sort
Prop
with
pprimop_equiv_mut
:=
Minimality
for
pprimop_equiv
Sort
Prop
.
Section
splicePrim_correct
.
Variables
result
t
t
'
:
ptype
.
Variable
ps
'
:
ctypeDenote
([
<
t
>
])
->
cprimops
ctypeDenote
t
'
.
Theorem
splicePrim_correct
:
forall
(
ps
:
cprimops
ctypeDenote
t
)
,
cprimopsDenote
(
splicePrim
ps
ps
'
)
=
cprimopsDenote
(
ps
'
(
cprimopsDenote
ps
))
.
induction
ps
;
equation
.
Qed
.
End
splicePrim_correct
.
Section
spliceTerm_correct
.
Variables
result
t
:
ptype
.
Variable
e
:
ctypeDenote
([
<
t
>
])
->
cterm
ctypeDenote
result
.
Variable
k
:
ptypeDenote
result
->
bool
.
Theorem
spliceTerm_correct
:
forall
(
ps
:
cprimops
ctypeDenote
t
)
,
ctermDenote
(
spliceTerm
ps
e
)
k
=
ctermDenote
(
e
(
cprimopsDenote
ps
))
k
.
induction
ps
;
equation
.
Qed
.
End
spliceTerm_correct
.
Section
spliceFuncs
'_
correct
.
Variable
result
:
ptype
.
Variables
T1
T2
:
Type
.
Variable
f
:
T1
->
T2
.
Variable
k
:
ptypeDenote
result
->
bool
.
Theorem
spliceFuncs
'_
correct
:
forall
fs
,
cfuncsDenote
(
spliceFuncs
'
fs
f
)
k
=
f
(
cfuncsDenote
fs
k
)
.
induction
fs
;
equation
.
Qed
.
End
spliceFuncs
'_
correct
.
Section
spliceFuncs_correct
.
Variable
result
:
ptype
.
Variables
T1
T2
T3
:
Type
.
Variable
fs2
:
cfuncs
ctypeDenote
result
T2
.
Variable
f
:
T1
->
T2
->
T3
.
Variable
k
:
ptypeDenote
result
->
bool
.
Hint
Rewrite
spliceFuncs
'_
correct
:
ltamer
.
Theorem
spliceFuncs_correct
:
forall
fs1
,
cfuncsDenote
(
spliceFuncs
fs1
fs2
f
)
k
=
f
(
cfuncsDenote
fs1
k
)
(
cfuncsDenote
fs2
k
)
.
induction
fs1
;
equation
.
Qed
.
End
spliceFuncs_correct
.
Section
inside_correct
.
Variable
result
:
ptype
.
Variables
T1
T2
:
Type
.
Variable
fs2
:
T1
->
cfuncs
ctypeDenote
result
T2
.
Variable
k
:
ptypeDenote
result
->
bool
.
Variable
f
:
T1
->
funcs
typeDenote
T2
.
Theorem
inside_correct
:
forall
fs1
,
cfuncsDenote
(
inside
fs1
fs2
)
k
=
cfuncsDenote
(
fs2
(
cfuncsDenote
fs1
k
))
k
.
induction
fs
1
;
equation
.
Theorem
spliceFuncs_correct
:
forall
fs
,
funcsDenote
(
spliceFuncs
fs
f
)
=
funcsDenote
(
f
(
funcsDenote
fs
))
.
induction
fs
;
crush
.
Qed
.
End
inside
_correct
.
End
spliceFuncs
_correct
.
Notation
"var <| to"
:=
(
match
to
with
|
None
=>
unit
|
Some
t
=>
var
(
[
<
t
>
])
%
cc
|
Some
t
=>
var
(
ccType
t
)
end
)
(
no
associativity
,
at
level
70
)
.
Section
packing_correct
.
Variable
result
:
ptype
.
Hint
Rewrite
splicePrim_correct
spliceTerm_correct
:
ltamer
.
Ltac
my_matching
:=
matching
my_equation
default_chooser
.
Fixpoint
makeEnv
(
envT
:
list
ptype
)
:
forall
(
fvs
:
isfree
envT
)
,
ptypeDenote
(
envType
fvs
)
->
envOf
ctypeDenote
fvs
:=
Fixpoint
makeEnv
(
envT
:
list
Source
.
type
)
:
forall
(
fvs
:
isfree
envT
)
,
Closed
.
typeDenote
(
envType
fvs
)
->
envOf
Closed
.
typeDenote
fvs
:=
match
envT
return
(
forall
(
fvs
:
isfree
envT
)
,
p
typeDenote
(
envType
fvs
)
->
envOf
c
typeDenote
fvs
)
with
Closed
.
typeDenote
(
envType
fvs
)
->
envOf
Closed
.
typeDenote
fvs
)
with
|
nil
=>
fun
_
_
=>
tt
|
first
::
rest
=>
fun
fvs
=>
match
fvs
return
(
p
typeDenote
(
envType
(
envT
:=
first
::
rest
)
fvs
)
->
envOf
(
envT
:=
first
::
rest
)
c
typeDenote
fvs
)
with
match
fvs
return
(
Closed
.
typeDenote
(
envType
(
envT
:=
first
::
rest
)
fvs
)
->
envOf
(
envT
:=
first
::
rest
)
Closed
.
typeDenote
fvs
)
with
|
(
false
,
fvs
'
)
=>
fun
env
=>
makeEnv
rest
fvs
'
env
|
(
true
,
fvs
'
)
=>
fun
env
=>
(
fst
env
,
makeEnv
rest
fvs
'
(
snd
env
))
end
end
.
Theorem
unpackExp_correct
:
forall
(
envT
:
list
ptype
)
(
fvs
:
isfree
envT
)
(
ps
:
cprimops
ctypeDenote
(
envType
fvs
))
(
e
:
envOf
ctypeDenote
fvs
->
cterm
ctypeDenote
result
)
k
,
ctermDenote
(
unpackExp
ps
e
)
k
=
ctermDenote
(
e
(
makeEnv
_
_
(
cprimopsDenote
ps
)))
k
.
induction
envT
;
my_matching
.
Implicit
Arguments
makeEnv
[
envT
fvs
]
.
Theorem
unpackExp_correct
:
forall
t
(
envT
:
list
Source
.
type
)
(
fvs
:
isfree
envT
)
(
e1
:
Closed
.
exp
Closed
.
typeDenote
(
envType
fvs
))
(
e2
:
envOf
Closed
.
typeDenote
fvs
->
Closed
.
exp
Closed
.
typeDenote
t
)
,
Closed
.
expDenote
(
unpackExp
e1
e2
)
=
Closed
.
expDenote
(
e2
(
makeEnv
(
Closed
.
expDenote
e1
)))
.
induction
envT
;
my_crush
.
Qed
.
Lemma
lookup_type_more
:
forall
v2
envT
(
fvs
:
isfree
envT
)
t
b
v
,
(
v2
=
length
envT
->
False
)
->
lookup_type
v2
(
envT
:=
t
::
envT
)
(
b
,
fvs
)
=
v
->
lookup_type
v2
fvs
=
v
.
equation
.
my_crush
.
Qed
.
Lemma
lookup_type_less
:
forall
v2
t
envT
(
fvs
:
isfree
(
t
::
envT
))
v
,
(
v2
=
length
envT
->
False
)
->
lookup_type
v2
(
snd
fvs
)
=
v
->
lookup_type
v2
(
envT
:=
t
::
envT
)
fvs
=
v
.
equation
.
my_crush
.
Qed
.
Hint
Resolve
lookup_bound_contra
.
Lemma
lookup_bound_contra_eq
:
forall
t
envT
(
fvs
:
isfree
envT
)
v
,
lookup_type
v
fvs
=
Some
t
->
v
=
length
envT
->
False
.
simpler
;
eapply
lookup_bound_contra
;
eauto
.
Defin
ed
.
my_crush
;
elimtype
False
;
eauto
.
Q
ed
.
Lemma
lookup_type_inner
:
forall
result
t
envT
v
t
'
(
fvs
:
isfree
envT
)
e
,
wf
Term
(
envT
:=
t
::
envT
)
(
true
,
fvs
)
e
->
lookup_type
v
(
snd
(
fvs
Term
(
result
:=
result
)
e
(
t
::
envT
)))
=
Some
t
'
->
lookup_type
v
fvs
=
Some
t
'
.
Hint
Resolve
lookup_bound_contra_eq
fvs
Term
_minimal
Lemma
lookup_type_inner
:
forall
t
t
'
envT
v
t
'
'
(
fvs
:
isfree
envT
)
e
,
wf
Exp
(
envT
:=
t
'
::
envT
)
(
true
,
fvs
)
e
->
lookup_type
v
(
snd
(
fvs
Exp
(
t
:=
t
)
e
(
t
'
::
envT
)))
=
Some
t
'
'
->
lookup_type
v
fvs
=
Some
t
'
'
.
Hint
Resolve
lookup_bound_contra_eq
fvs
Exp
_minimal
lookup_type_more
lookup_type_less
.
Hint
Extern
2
(
Some
_
=
Some
_
)
=>
contradictory
.
Hint
Extern
2
(
Some
_
=
Some
_
)
=>
elimtype
False
.
eauto
6.
Qed
.
Lemma
cast_irrel
:
forall
T1
T2
x
(
H1
H2
:
T1
=
T2
)
,
(
x
:?
H1
)
=
(
x
:?
H2
)
.
equation
.
match
H1
in
_
=
T
return
T
with
|
refl_equal
=>
x
end
=
match
H2
in
_
=
T
return
T
with
|
refl_equal
=>
x
end
.
intros
;
generalize
H1
;
crush
;
repeat
match
goal
with
|
[
|-
context
[
match
?
pf
with
refl_equal
=>
_
end
]
]
=>
rewrite
(
UIP_refl
_
_
pf
)
end
;
reflexivity
.
Qed
.
Hint
Immediate
cast_irrel
.
Lemma
cast_irrel_unit
:
forall
T1
T2
x
y
(
H1
:
T1
=
T2
)
(
H2
:
unit
=
T2
)
,
(
x
:?
H1
)
=
(
y
:?
H2
)
.
intros
;
generalize
H1
;
rewrite
<-
H2
in
H1
;
equation
.
Qed
.
Hint
Immediate
cast_irrel_unit
.
Hint
Extern
3
(
_
=
_
)
=>
Hint
Extern
3
(
_
==
_
)
=>
match
goal
with
|
[
|-
context
[
False_rect
_
?
H
]
]
=>
apply
False_rect
;
exact
H
end
.
Theorem
packExp_correct
:
forall
v2
t
envT
(
fvs1
fvs2
:
isfree
envT
)
Heq1
(
Heq2
:
ctypeDenote
<|
lookup_type
v2
fvs2
=
ptypeDenote
t
)
Theorem
packExp_correct
:
forall
v
envT
(
fvs1
fvs2
:
isfree
envT
)
Hincl
env
,
(
lookup
ctypeDenote
v2
env
:?
Heq2
)
=
(
lookup
ctypeDenote
v2
(
makeEnv
envT
fvs1
(
cprimops
Denote
(
packExp
fvs1
fvs2
Hincl
env
)))
:?
Heq1
)
.
induction
envT
;
my_
equation
.
lookup_type
v
fvs1
<>
None
->
lookup
Closed
.
typeDenote
v
env
==
lookup
Closed
.
typeDenote
v
(
makeEnv
(
Closed
.
exp
Denote
(
packExp
fvs1
fvs2
Hincl
env
))
)
.
induction
envT
;
my_
crush
.
Qed
.
End
packing_correct
.
(
*
Lemma
typeDenote_same
:
forall
t
,
Closed
.
typeDenote
(
ccType
t
)
=
Source
.
typeDenote
t
.
induction
t
;
crush
.
Qed
.*
)
Lemma
typeDenote_same
:
forall
t
,
Source
.
typeDenote
t
=
Closed
.
typeDenote
(
ccType
t
)
.
induction
t
;
crush
.
Qed
.
Hint
Resolve
typeDenote_same
.
Lemma
look
:
forall
envT
n
(
fvs
:
isfree
envT
)
t
,
lookup_type
n
fvs
=
Some
t
->
ctypeDenote
<|
lookup_type
n
fvs
=
p
typeDenote
t
.
equation
.
->
Closed
.
typeDenote
<|
lookup_type
n
fvs
=
Source
.
typeDenote
t
.
crush
.
Qed
.
Implicit
Arguments
look
[
envT
n
fvs
t
]
.
Lemma
cast_jmeq
:
forall
(
T1
T2
:
Set
)
(
pf
:
T1
=
T2
)
(
T2
'
:
Set
)
(
v1
:
T1
)
(
v2
:
T2
'
)
,
v1
==
v2
->
T2
'
=
T2
->
match
pf
in
_
=
T
return
T
with
|
refl_equal
=>
v1
end
==
v2
.
intros
;
generalize
pf
;
subst
.
intro
.
rewrite
(
UIP_refl
_
_
pf
)
.
auto
.
Qed
.
Hint
Resolve
cast_jmeq
.
Theorem
ccTerm_correct
:
forall
resul
t
G
(
e1
:
pterm
ptypeDenote
resul
t
)
(
e2
:
pterm
natvar
resul
t
)
,
pterm
_equiv
G
e1
e2
->
forall
(
envT
:
list
p
type
)
(
fvs
:
isfree
envT
)
(
env
:
envOf
ctypeDenote
fvs
)
(
Hwf
:
wfTerm
fvs
e2
)
k
,
(
forall
t
(
v1
:
p
typeDenote
t
)
(
v2
:
natvar
t
)
,
In
(
vars
(
x
:=
t
)
(
v1
,
v2
))
G
Theorem
ccTerm_correct
:
forall
t
G
(
e1
:
Source
.
exp
Source
.
typeDenote
t
)
(
e2
:
Source
.
exp
natvar
t
)
,
exp
_equiv
G
e1
e2
->
forall
(
envT
:
list
Source
.
type
)
(
fvs
:
isfree
envT
)
(
env
:
envOf
Closed
.
typeDenote
fvs
)
(
wf
:
wfExp
fvs
e2
)
,
(
forall
t
(
v1
:
Source
.
typeDenote
t
)
(
v2
:
natvar
t
)
,
In
(
existT
_
_
(
v1
,
v2
))
G
->
v2
<
length
envT
)
->
(
forall
t
(
v1
:
p
typeDenote
t
)
(
v2
:
natvar
t
)
,
In
(
vars
(
x
:=
t
)
(
v1
,
v2
))
G
->
(
forall
t
(
v1
:
Source
.
typeDenote
t
)
(
v2
:
natvar
t
)
,
In
(
existT
_
_
(
v1
,
v2
))
G
->
lookup_type
v2
fvs
=
Some
t
->
forall
Heq
,
(
lookup
ctypeDenote
v2
env
:?
Heq
)
=
v1
)
->
ptermDenote
e1
k
=
ctermDenote
(
cfuncsDenote
(
ccTerm
e2
fvs
Hwf
)
k
env
)
k
.
Hint
Rewrite
splicePrim_correct
spliceTerm_correct
spliceFuncs_correct
inside_correct
:
ltamer
.
->
lookup
Closed
.
typeDenote
v2
env
==
v1
)
->
Closed
.
expDenote
(
funcsDenote
(
ccExp
e2
fvs
wf
)
env
)
==
Source
.
expDenote
e1
.
Hint
Rewrite
unpackExp_correct
:
ltamer
.
Hint
Rewrite
spliceFuncs_correct
unpackExp_correct
:
cpdt
.
Hint
Resolve
packExp_correct
lookup_type_inner
.
Hint
Extern
1
(
_
=
_
)
=>
push_vars
.
induction
1
.
Hint
Extern
1
(
_
=
_
)
=>
match
goal
with
|
[
Hvars
:
forall
t
v1
v2
,
_
,
Hin
:
In
_
_
|-
_
]
=>
rewrite
(
Hvars
_
_
_
Hin
)
end
.
Hint
Extern
1
(
wfPrimop
_
_
)
=>
tauto
.
Hint
Extern
1
(
_
<
_
)
=>
match
goal
with
|
[
Hvars
:
forall
t
v1
v2
,
_
,
Hin
:
In
_
_
|-
_
]
=>
exact
(
Hvars
_
_
_
Hin
)
end
.
crush
.
crush
.
crush
.
crush
.
Hint
Extern
1
(
lookup_type
_
_
=
_
)
=>
tauto
.
Hint
Extern
1
(
_
=
_
)
=>
match
goal
with
|
[
Hvars
:
forall
t
v1
v2
,
_
,
Hin
:
In
(
vars
(
_
,
length
?
envT
))
_
|-
_
]
=>
contradictory
;
assert
(
length
envT
<
length
envT
)
;
[
auto
|
omega
]
end
.
Hint
Extern
5
(
_
=
_
)
=>
symmetry
.
Hint
Extern
1
(
_
=
_
)
=>
match
goal
with
|
[
H
:
lookup_type
?
v
_
=
Some
?
t
,
fvs
:
isfree
_
|-
(
lookup
_
_
_
:?
_
)
=
_
]
=>
let
Hty
:=
fresh
"Hty"
in
(
assert
(
Hty
:
lookup_type
v
fvs
=
Some
t
)
;
[
eauto
|
eapply
(
trans_cast
(
look
Hty
))])
end
.
Hint
Extern
3
(
ptermDenote
_
_
=
ctermDenote
_
_
)
=>
match
goal
with
|
[
H
:
_
|-
ptermDenote
(
_
?
v1
)
_
=
ctermDenote
(
cfuncsDenote
(
ccTerm
(
_
?
v2
)
(
envT
:=
?
envT
)
?
fvs
_
)
_
_
)
_
]
=>
apply
(
H
v1
v2
envT
fvs
)
;
my_simpler
en
d
.
Lemma
app_jmeq
:
forall
dom1
dom2
ran1
ran2
(
f1
:
dom1
->
ran1
)
(
f2
:
dom2
->
ran2
)
(
x1
:
dom1
)
(
x2
:
dom2
)
,
ran1
=
ran2
->
f1
==
f2
->
x1
==
x2
->
f1
x1
==
f2
x2
.
crush
.
assert
(
dom1
=
dom2
)
.
inversion
H1
;
trivial
.
crush
.
Qed
.
Lemma
app_jmeq
:
forall
dom
ran
(
f1
:
Closed
.
typeDenote
(
ccType
dom
)
->
Closed
.
typeDenote
(
ccType
ran
))
(
f2
:
Source
.
typeDenote
dom
->
Source
.
typeDenote
ran
)
(
x1
:
dom1
)
(
x2
:
dom2
)
,
ran1
=
ran2
->
f1
==
f2
->
x1
==
x2
->
f1
x1
==
f2
x2
.
crush
.
assert
(
dom1
=
dom2
)
.
inversion
H1
;
trivial
.
crush
.
Qe
d
.
intro
.
apply
(
pterm_equiv_mut
(
fun
G
(
e1
:
pterm
ptypeDenote
result
)
(
e2
:
pterm
natvar
result
)
=>
forall
(
envT
:
list
ptype
)
(
fvs
:
isfree
envT
)
(
env
:
envOf
ctypeDenote
fvs
)
(
Hwf
:
wfTerm
fvs
e2
)
k
,
(
forall
t
(
v1
:
ptypeDenote
t
)
(
v2
:
natvar
t
)
,
In
(
vars
(
x
:=
t
)
(
v1
,
v2
))
G
->
v2
<
length
envT
)
->
(
forall
t
(
v1
:
ptypeDenote
t
)
(
v2
:
natvar
t
)
,
In
(
vars
(
x
:=
t
)
(
v1
,
v2
))
G
->
lookup_type
v2
fvs
=
Some
t
->
forall
Heq
,
(
lookup
ctypeDenote
v2
env
:?
Heq
)
=
v1
)
->
ptermDenote
e1
k
=
ctermDenote
(
cfuncsDenote
(
ccTerm
e2
fvs
Hwf
)
k
env
)
k
)
(
fun
G
t
(
p1
:
pprimop
ptypeDenote
result
t
)
(
p2
:
pprimop
natvar
result
t
)
=>
forall
(
envT
:
list
ptype
)
(
fvs
:
isfree
envT
)
(
env
:
envOf
ctypeDenote
fvs
)
(
Hwf
:
wfPrimop
fvs
p2
)
Hwf
k
,
(
forall
t
(
v1
:
ptypeDenote
t
)
(
v2
:
natvar
t
)
,
In
(
vars
(
x
:=
t
)
(
v1
,
v2
))
G
->
v2
<
length
envT
)
->
(
forall
t
(
v1
:
ptypeDenote
t
)
(
v2
:
natvar
t
)
,
In
(
vars
(
x
:=
t
)
(
v1
,
v2
))
G
->
lookup_type
v2
fvs
=
Some
t
->
forall
Heq
,
(
lookup
ctypeDenote
v2
env
:?
Heq
)
=
v1
)
->
pprimopDenote
p1
k
=
cprimopsDenote
(
cfuncsDenote
(
ccPrimop
p2
fvs
Hwf
)
k
env
)))
;
my_simpler
;
eauto
.
simpl
.
refine
(
app_jmeq
_
_
_
)
.
apply
app_jmeq
.
dependent
rewrite
<-
IHexp_equiv1
.
Qed
.
...
...
src/Tactics.v
View file @
402e0cca
...
...
@@ -121,18 +121,19 @@ Ltac un_done :=
end
.
Ltac
crush
'
lemmas
invOne
:=
let
sintuition
:=
simpl
in
*;
intuition
;
try
subst
;
repeat
(
simplHyp
invOne
;
intuition
;
try
subst
)
;
try
congruence
in
(
sintuition
;
autorewrite
with
cpdt
in
*;
repeat
(
match
goal
with
|
[
H
:
_
|-
_
]
=>
(
rewrite
H
;
[])
||
(
rewrite
H
;
[
|
solve
[
crush
'
lemmas
invOne
]
])
end
;
autorewrite
with
cpdt
in
*
)
;
let
sintuition
:=
simpl
in
*;
intuition
;
try
subst
;
repeat
(
simplHyp
invOne
;
intuition
;
try
subst
)
;
try
congruence
in
let
rewriter
:=
autorewrite
with
cpdt
in
*;
repeat
(
match
goal
with
|
[
H
:
_
|-
_
]
=>
(
rewrite
H
;
[])
||
(
rewrite
H
;
[
|
solve
[
crush
'
lemmas
invOne
]
])
||
(
rewrite
H
;
[
|
solve
[
crush
'
lemmas
invOne
]
|
solve
[
crush
'
lemmas
invOne
]
])
end
;
autorewrite
with
cpdt
in
*
)
in
(
sintuition
;
rewriter
;
match
lemmas
with
|
false
=>
idtac
|
_
=>
repeat
((
app
ltac
:
(
fun
L
=>
inster
L
L
)
lemmas
||
appHyps
ltac
:
(
fun
L
=>
inster
L
L
))
;
repeat
(
simplHyp
invOne
;
intuition
))
;
un_done
end
;
sintuition
;
try
omega
;
try
(
elimtype
False
;
omega
))
.
end
;
sintuition
;
rewriter
;
sintuition
;
try
omega
;
try
(
elimtype
False
;
omega
))
.
Ltac
crush
:=
crush
'
false
fail
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment