Commit 402e0cca authored by Adam Chlipala's avatar Adam Chlipala

About to stop using JMeq

parent 4a19cacf
...@@ -8,14 +8,18 @@ ...@@ -8,14 +8,18 @@
*) *)
(* begin hide *) (* begin hide *)
Require Import Arith Bool String List. Require Import Arith Bool String List Eqdep JMeq.
Require Import Axioms Tactics DepList. Require Import Axioms Tactics DepList.
Set Implicit Arguments. Set Implicit Arguments.
Infix "==" := JMeq (at level 70, no associativity).
(* end hide *) (* end hide *)
(** %\chapter{Intensional Transformations}% *) (** %\chapter{Intensional Transformations}% *)
(** TODO: Prose for this chapter *) (** TODO: Prose for this chapter *)
...@@ -797,292 +801,221 @@ Implicit Arguments unpackExp [var t envT fvs]. ...@@ -797,292 +801,221 @@ Implicit Arguments unpackExp [var t envT fvs].
Implicit Arguments ccExp [var t envT]. Implicit Arguments ccExp [var t envT].
Fixpoint map_funcs var result T1 T2 (f : T1 -> T2) (fs : cfuncs var result T1) {struct fs} Fixpoint map_funcs var T1 T2 (f : T1 -> T2) (fs : funcs var T1) {struct fs}
: cfuncs var result T2 := : funcs var T2 :=
match fs with match fs with
| CMain v => CMain (f v) | Main v => Main (f v)
| CAbs _ _ e fs' => CAbs e (fun x => map_funcs f (fs' x)) | Abs _ _ _ e fs' => Abs e (fun x => map_funcs f (fs' x))
end. end.
Definition CcTerm' result (E : Pterm result) (Hwf : wfTerm (envT := nil) tt (E _)) : Cprog result := Definition CcTerm' t (E : Source.Exp t) (Hwf : wfExp (envT := nil) tt (E _)) : Prog (ccType t) :=
fun _ => map_funcs (fun f => f tt) (ccTerm (E _) (envT := nil) tt Hwf). fun _ => map_funcs (fun f => f tt) (ccExp (E _) (envT := nil) tt Hwf).
(** * Correctness *) (** * Correctness *)
Scheme pterm_equiv_mut := Minimality for pterm_equiv Sort Prop
with pprimop_equiv_mut := Minimality for pprimop_equiv Sort Prop.
Section splicePrim_correct.
Variables result t t' : ptype.
Variable ps' : ctypeDenote ([< t >]) -> cprimops ctypeDenote t'.
Theorem splicePrim_correct : forall (ps : cprimops ctypeDenote t),
cprimopsDenote (splicePrim ps ps')
= cprimopsDenote (ps' (cprimopsDenote ps)).
induction ps; equation.
Qed.
End splicePrim_correct.
Section spliceTerm_correct.
Variables result t : ptype.
Variable e : ctypeDenote ([< t >]) -> cterm ctypeDenote result.
Variable k : ptypeDenote result -> bool.
Theorem spliceTerm_correct : forall (ps : cprimops ctypeDenote t),
ctermDenote (spliceTerm ps e) k
= ctermDenote (e (cprimopsDenote ps)) k.
induction ps; equation.
Qed.
End spliceTerm_correct.
Section spliceFuncs'_correct.
Variable result : ptype.
Variables T1 T2 : Type.
Variable f : T1 -> T2.
Variable k : ptypeDenote result -> bool.
Theorem spliceFuncs'_correct : forall fs,
cfuncsDenote (spliceFuncs' fs f) k
= f (cfuncsDenote fs k).
induction fs; equation.
Qed.
End spliceFuncs'_correct.
Section spliceFuncs_correct. Section spliceFuncs_correct.
Variable result : ptype.
Variables T1 T2 T3 : Type.
Variable fs2 : cfuncs ctypeDenote result T2.
Variable f : T1 -> T2 -> T3.
Variable k : ptypeDenote result -> bool.
Hint Rewrite spliceFuncs'_correct : ltamer.
Theorem spliceFuncs_correct : forall fs1,
cfuncsDenote (spliceFuncs fs1 fs2 f) k
= f (cfuncsDenote fs1 k) (cfuncsDenote fs2 k).
induction fs1; equation.
Qed.
End spliceFuncs_correct.
Section inside_correct.
Variable result : ptype.
Variables T1 T2 : Type. Variables T1 T2 : Type.
Variable fs2 : T1 -> cfuncs ctypeDenote result T2. Variable f : T1 -> funcs typeDenote T2.
Variable k : ptypeDenote result -> bool.
Theorem inside_correct : forall fs1, Theorem spliceFuncs_correct : forall fs,
cfuncsDenote (inside fs1 fs2) k funcsDenote (spliceFuncs fs f)
= cfuncsDenote (fs2 (cfuncsDenote fs1 k)) k. = funcsDenote (f (funcsDenote fs)).
induction fs1; equation. induction fs; crush.
Qed. Qed.
End inside_correct. End spliceFuncs_correct.
Notation "var <| to" := (match to with Notation "var <| to" := (match to with
| None => unit | None => unit
| Some t => var ([< t >])%cc | Some t => var (ccType t)
end) (no associativity, at level 70). end) (no associativity, at level 70).
Section packing_correct. Section packing_correct.
Variable result : ptype. Fixpoint makeEnv (envT : list Source.type) : forall (fvs : isfree envT),
Closed.typeDenote (envType fvs)
Hint Rewrite splicePrim_correct spliceTerm_correct : ltamer. -> envOf Closed.typeDenote fvs :=
Ltac my_matching := matching my_equation default_chooser.
Fixpoint makeEnv (envT : list ptype) : forall (fvs : isfree envT),
ptypeDenote (envType fvs)
-> envOf ctypeDenote fvs :=
match envT return (forall (fvs : isfree envT), match envT return (forall (fvs : isfree envT),
ptypeDenote (envType fvs) Closed.typeDenote (envType fvs)
-> envOf ctypeDenote fvs) with -> envOf Closed.typeDenote fvs) with
| nil => fun _ _ => tt | nil => fun _ _ => tt
| first :: rest => fun fvs => | first :: rest => fun fvs =>
match fvs return (ptypeDenote (envType (envT := first :: rest) fvs) match fvs return (Closed.typeDenote (envType (envT := first :: rest) fvs)
-> envOf (envT := first :: rest) ctypeDenote fvs) with -> envOf (envT := first :: rest) Closed.typeDenote fvs) with
| (false, fvs') => fun env => makeEnv rest fvs' env | (false, fvs') => fun env => makeEnv rest fvs' env
| (true, fvs') => fun env => (fst env, makeEnv rest fvs' (snd env)) | (true, fvs') => fun env => (fst env, makeEnv rest fvs' (snd env))
end end
end. end.
Theorem unpackExp_correct : forall (envT : list ptype) (fvs : isfree envT) Implicit Arguments makeEnv [envT fvs].
(ps : cprimops ctypeDenote (envType fvs))
(e : envOf ctypeDenote fvs -> cterm ctypeDenote result) k, Theorem unpackExp_correct : forall t (envT : list Source.type) (fvs : isfree envT)
ctermDenote (unpackExp ps e) k (e1 : Closed.exp Closed.typeDenote (envType fvs))
= ctermDenote (e (makeEnv _ _ (cprimopsDenote ps))) k. (e2 : envOf Closed.typeDenote fvs -> Closed.exp Closed.typeDenote t),
induction envT; my_matching. Closed.expDenote (unpackExp e1 e2)
= Closed.expDenote (e2 (makeEnv (Closed.expDenote e1))).
induction envT; my_crush.
Qed. Qed.
Lemma lookup_type_more : forall v2 envT (fvs : isfree envT) t b v, Lemma lookup_type_more : forall v2 envT (fvs : isfree envT) t b v,
(v2 = length envT -> False) (v2 = length envT -> False)
-> lookup_type v2 (envT := t :: envT) (b, fvs) = v -> lookup_type v2 (envT := t :: envT) (b, fvs) = v
-> lookup_type v2 fvs = v. -> lookup_type v2 fvs = v.
equation. my_crush.
Qed. Qed.
Lemma lookup_type_less : forall v2 t envT (fvs : isfree (t :: envT)) v, Lemma lookup_type_less : forall v2 t envT (fvs : isfree (t :: envT)) v,
(v2 = length envT -> False) (v2 = length envT -> False)
-> lookup_type v2 (snd fvs) = v -> lookup_type v2 (snd fvs) = v
-> lookup_type v2 (envT := t :: envT) fvs = v. -> lookup_type v2 (envT := t :: envT) fvs = v.
equation. my_crush.
Qed. Qed.
Hint Resolve lookup_bound_contra.
Lemma lookup_bound_contra_eq : forall t envT (fvs : isfree envT) v, Lemma lookup_bound_contra_eq : forall t envT (fvs : isfree envT) v,
lookup_type v fvs = Some t lookup_type v fvs = Some t
-> v = length envT -> v = length envT
-> False. -> False.
simpler; eapply lookup_bound_contra; eauto. my_crush; elimtype False; eauto.
Defined. Qed.
Lemma lookup_type_inner : forall result t envT v t' (fvs : isfree envT) e, Lemma lookup_type_inner : forall t t' envT v t'' (fvs : isfree envT) e,
wfTerm (envT := t :: envT) (true, fvs) e wfExp (envT := t' :: envT) (true, fvs) e
-> lookup_type v (snd (fvsTerm (result := result) e (t :: envT))) = Some t' -> lookup_type v (snd (fvsExp (t := t) e (t' :: envT))) = Some t''
-> lookup_type v fvs = Some t'. -> lookup_type v fvs = Some t''.
Hint Resolve lookup_bound_contra_eq fvsTerm_minimal Hint Resolve lookup_bound_contra_eq fvsExp_minimal
lookup_type_more lookup_type_less. lookup_type_more lookup_type_less.
Hint Extern 2 (Some _ = Some _) => contradictory. Hint Extern 2 (Some _ = Some _) => elimtype False.
eauto 6. eauto 6.
Qed. Qed.
Lemma cast_irrel : forall T1 T2 x (H1 H2 : T1 = T2), Lemma cast_irrel : forall T1 T2 x (H1 H2 : T1 = T2),
(x :? H1) = (x :? H2). match H1 in _ = T return T with
equation. | refl_equal => x
end
= match H2 in _ = T return T with
| refl_equal => x
end.
intros; generalize H1; crush;
repeat match goal with
| [ |- context[match ?pf with refl_equal => _ end] ] =>
rewrite (UIP_refl _ _ pf)
end;
reflexivity.
Qed. Qed.
Hint Immediate cast_irrel. Hint Immediate cast_irrel.
Lemma cast_irrel_unit : forall T1 T2 x y (H1 : T1 = T2) (H2 : unit = T2), Hint Extern 3 (_ == _) =>
(x :? H1) = (y :? H2).
intros; generalize H1;
rewrite <- H2 in H1;
equation.
Qed.
Hint Immediate cast_irrel_unit.
Hint Extern 3 (_ = _) =>
match goal with match goal with
| [ |- context[False_rect _ ?H] ] => | [ |- context[False_rect _ ?H] ] =>
apply False_rect; exact H apply False_rect; exact H
end. end.
Theorem packExp_correct : forall v2 t envT (fvs1 fvs2 : isfree envT) Theorem packExp_correct : forall v envT (fvs1 fvs2 : isfree envT)
Heq1 (Heq2 : ctypeDenote <| lookup_type v2 fvs2 = ptypeDenote t)
Hincl env, Hincl env,
(lookup ctypeDenote v2 env :? Heq2) lookup_type v fvs1 <> None
= (lookup ctypeDenote v2 -> lookup Closed.typeDenote v env
(makeEnv envT fvs1 == lookup Closed.typeDenote v
(cprimopsDenote (makeEnv (Closed.expDenote
(packExp fvs1 fvs2 Hincl env))) :? Heq1). (packExp fvs1 fvs2 Hincl env))).
induction envT; my_equation. induction envT; my_crush.
Qed. Qed.
End packing_correct. End packing_correct.
(*Lemma typeDenote_same : forall t,
Closed.typeDenote (ccType t) = Source.typeDenote t.
induction t; crush.
Qed.*)
Lemma typeDenote_same : forall t,
Source.typeDenote t = Closed.typeDenote (ccType t).
induction t; crush.
Qed.
Hint Resolve typeDenote_same.
Lemma look : forall envT n (fvs : isfree envT) t, Lemma look : forall envT n (fvs : isfree envT) t,
lookup_type n fvs = Some t lookup_type n fvs = Some t
-> ctypeDenote <| lookup_type n fvs = ptypeDenote t. -> Closed.typeDenote <| lookup_type n fvs = Source.typeDenote t.
equation. crush.
Qed. Qed.
Implicit Arguments look [envT n fvs t]. Implicit Arguments look [envT n fvs t].
Lemma cast_jmeq : forall (T1 T2 : Set) (pf : T1 = T2) (T2' : Set) (v1 : T1) (v2 : T2'),
v1 == v2
-> T2' = T2
-> match pf in _ = T return T with
| refl_equal => v1
end == v2.
intros; generalize pf; subst.
intro.
rewrite (UIP_refl _ _ pf).
auto.
Qed.
Hint Resolve cast_jmeq.
Theorem ccTerm_correct : forall result G Theorem ccTerm_correct : forall t G
(e1 : pterm ptypeDenote result) (e1 : Source.exp Source.typeDenote t)
(e2 : pterm natvar result), (e2 : Source.exp natvar t),
pterm_equiv G e1 e2 exp_equiv G e1 e2
-> forall (envT : list ptype) (fvs : isfree envT) -> forall (envT : list Source.type) (fvs : isfree envT)
(env : envOf ctypeDenote fvs) (Hwf : wfTerm fvs e2) k, (env : envOf Closed.typeDenote fvs) (wf : wfExp fvs e2),
(forall t (v1 : ptypeDenote t) (v2 : natvar t), (forall t (v1 : Source.typeDenote t) (v2 : natvar t),
In (vars (x := t) (v1, v2)) G In (existT _ _ (v1, v2)) G
-> v2 < length envT) -> v2 < length envT)
-> (forall t (v1 : ptypeDenote t) (v2 : natvar t), -> (forall t (v1 : Source.typeDenote t) (v2 : natvar t),
In (vars (x := t) (v1, v2)) G In (existT _ _ (v1, v2)) G
-> lookup_type v2 fvs = Some t -> lookup_type v2 fvs = Some t
-> forall Heq, (lookup ctypeDenote v2 env :? Heq) = v1) -> lookup Closed.typeDenote v2 env == v1)
-> ptermDenote e1 k -> Closed.expDenote (funcsDenote (ccExp e2 fvs wf) env)
= ctermDenote (cfuncsDenote (ccTerm e2 fvs Hwf) k env) k. == Source.expDenote e1.
Hint Rewrite splicePrim_correct spliceTerm_correct
spliceFuncs_correct inside_correct : ltamer.
Hint Rewrite unpackExp_correct : ltamer. Hint Rewrite spliceFuncs_correct unpackExp_correct : cpdt.
Hint Resolve packExp_correct lookup_type_inner. Hint Resolve packExp_correct lookup_type_inner.
Hint Extern 1 (_ = _) => push_vars. induction 1.
Hint Extern 1 (_ = _) => crush.
match goal with crush.
| [ Hvars : forall t v1 v2, _, crush.
Hin : In _ _ |- _ ] => crush.
rewrite (Hvars _ _ _ Hin)
end.
Hint Extern 1 (wfPrimop _ _) => tauto.
Hint Extern 1 (_ < _) =>
match goal with
| [ Hvars : forall t v1 v2, _,
Hin : In _ _ |- _ ] =>
exact (Hvars _ _ _ Hin)
end.
Hint Extern 1 (lookup_type _ _ = _) => tauto. Lemma app_jmeq : forall dom1 dom2 ran1 ran2
(f1 : dom1 -> ran1) (f2 : dom2 -> ran2)
Hint Extern 1 (_ = _) => (x1 : dom1) (x2 : dom2),
match goal with ran1 = ran2
| [ Hvars : forall t v1 v2, _, -> f1 == f2
Hin : In (vars (_, length ?envT)) _ |- _ ] => -> x1 == x2
contradictory; assert (length envT < length envT); [auto | omega] -> f1 x1 == f2 x2.
end. crush.
assert (dom1 = dom2).
Hint Extern 5 (_ = _) => symmetry. inversion H1; trivial.
crush.
Hint Extern 1 (_ = _) => Qed.
match goal with
| [ H : lookup_type ?v _ = Some ?t, fvs : isfree _ |- (lookup _ _ _ :? _) = _ ] => Lemma app_jmeq : forall dom ran
let Hty := fresh "Hty" in (f1 : Closed.typeDenote (ccType dom) -> Closed.typeDenote (ccType ran))
(assert (Hty : lookup_type v fvs = Some t); (f2 : Source.typeDenote dom -> Source.typeDenote ran)
[eauto (x1 : dom1) (x2 : dom2),
| eapply (trans_cast (look Hty))]) ran1 = ran2
end. -> f1 == f2
-> x1 == x2
Hint Extern 3 (ptermDenote _ _ = ctermDenote _ _) => -> f1 x1 == f2 x2.
match goal with crush.
| [ H : _ |- ptermDenote (_ ?v1) _ assert (dom1 = dom2).
= ctermDenote (cfuncsDenote (ccTerm (_ ?v2) (envT := ?envT) ?fvs _) _ _) _ ] => inversion H1; trivial.
apply (H v1 v2 envT fvs); my_simpler crush.
end. Qed.
intro. simpl.
apply (pterm_equiv_mut refine (app_jmeq _ _ _).
(fun G (e1 : pterm ptypeDenote result) (e2 : pterm natvar result) => apply app_jmeq.
forall (envT : list ptype) (fvs : isfree envT) dependent rewrite <- IHexp_equiv1.
(env : envOf ctypeDenote fvs) (Hwf : wfTerm fvs e2) k,
(forall t (v1 : ptypeDenote t) (v2 : natvar t),
In (vars (x := t) (v1, v2)) G
-> v2 < length envT)
-> (forall t (v1 : ptypeDenote t) (v2 : natvar t),
In (vars (x := t) (v1, v2)) G
-> lookup_type v2 fvs = Some t
-> forall Heq, (lookup ctypeDenote v2 env :? Heq) = v1)
-> ptermDenote e1 k
= ctermDenote (cfuncsDenote (ccTerm e2 fvs Hwf) k env) k)
(fun G t (p1 : pprimop ptypeDenote result t) (p2 : pprimop natvar result t) =>
forall (envT : list ptype) (fvs : isfree envT)
(env : envOf ctypeDenote fvs) (Hwf : wfPrimop fvs p2) Hwf k,
(forall t (v1 : ptypeDenote t) (v2 : natvar t),
In (vars (x := t) (v1, v2)) G
-> v2 < length envT)
-> (forall t (v1 : ptypeDenote t) (v2 : natvar t),
In (vars (x := t) (v1, v2)) G
-> lookup_type v2 fvs = Some t
-> forall Heq, (lookup ctypeDenote v2 env :? Heq) = v1)
-> pprimopDenote p1 k
= cprimopsDenote (cfuncsDenote (ccPrimop p2 fvs Hwf) k env)));
my_simpler; eauto.
Qed. Qed.
......
...@@ -121,18 +121,19 @@ Ltac un_done := ...@@ -121,18 +121,19 @@ Ltac un_done :=
end. end.
Ltac crush' lemmas invOne := Ltac crush' lemmas invOne :=
let sintuition := simpl in *; intuition; try subst; repeat (simplHyp invOne; intuition; try subst); try congruence let sintuition := simpl in *; intuition; try subst; repeat (simplHyp invOne; intuition; try subst); try congruence in
in (sintuition; let rewriter := autorewrite with cpdt in *;
autorewrite with cpdt in *; repeat (match goal with
repeat (match goal with | [ H : _ |- _ ] => (rewrite H; [])
| [ H : _ |- _ ] => (rewrite H; []) || (rewrite H; [ | solve [ crush' lemmas invOne ] ])
|| (rewrite H; [ | solve [ crush' lemmas invOne ] ]) || (rewrite H; [ | solve [ crush' lemmas invOne ] | solve [ crush' lemmas invOne ] ])
end; autorewrite with cpdt in *); end; autorewrite with cpdt in *)
in (sintuition; rewriter;
match lemmas with match lemmas with
| false => idtac | false => idtac
| _ => repeat ((app ltac:(fun L => inster L L) lemmas || appHyps ltac:(fun L => inster L L)); | _ => repeat ((app ltac:(fun L => inster L L) lemmas || appHyps ltac:(fun L => inster L L));
repeat (simplHyp invOne; intuition)); un_done repeat (simplHyp invOne; intuition)); un_done
end; sintuition; try omega; try (elimtype False; omega)). end; sintuition; rewriter; sintuition; try omega; try (elimtype False; omega)).
Ltac crush := crush' false fail. Ltac crush := crush' false fail.
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment