Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Contribute to GitLab
Sign in
Toggle navigation
C
cpdt
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
research
cpdt
Commits
4a19cacf
Commit
4a19cacf
authored
Nov 16, 2008
by
Adam Chlipala
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Closure conversion defined
parent
533e2737
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
904 additions
and
15 deletions
+904
-15
Firstorder.v
src/Firstorder.v
+7
-4
Intensional.v
src/Intensional.v
+885
-4
Tactics.v
src/Tactics.v
+12
-7
No files found.
src/Firstorder.v
View file @
4a19cacf
...
@@ -146,10 +146,13 @@ Module Concrete.
...
@@ -146,10 +146,13 @@ Module Concrete.
induction
G1
as
[
|
[
x
''
t
'
]
tl
]
;
crush
;
eauto
;
induction
G1
as
[
|
[
x
''
t
'
]
tl
]
;
crush
;
eauto
;
match
goal
with
match
goal
with
|
[
H
:
_
|-
v
_
:
_
|-
_
]
=>
inversion
H
|
[
H
:
_
|-
v
_
:
_
|-
_
]
=>
inversion
H
end
;
crush
;
elimtype
False
;
eauto
;
end
;
crush
;
(
elimtype
False
;
eauto
;
match
goal
with
match
goal
with
|
[
H
:
nil
|-
v
_
:
_
|-
_
]
=>
inversion
H
|
[
H
:
nil
|-
v
_
:
_
|-
_
]
=>
inversion
H
end
.
end
)
||
match
goal
with
|
[
H
:
_
|-
_
]
=>
apply
H
;
crush
;
eauto
end
.
Qed
.
Qed
.
Implicit
Arguments
subst_lookup
[
x
'
t
G1
]
.
Implicit
Arguments
subst_lookup
[
x
'
t
G1
]
.
...
...
src/Intensional.v
View file @
4a19cacf
...
@@ -8,7 +8,7 @@
...
@@ -8,7 +8,7 @@
*
)
*
)
(
*
begin
hide
*
)
(
*
begin
hide
*
)
Require
Import
String
List
.
Require
Import
Arith
Bool
String
List
.
Require
Import
Axioms
Tactics
DepList
.
Require
Import
Axioms
Tactics
DepList
.
...
@@ -130,7 +130,7 @@ Module Source.
...
@@ -130,7 +130,7 @@ Module Source.
exp_equiv
nil
(
E
var1
)
(
E
var2
)
.
exp_equiv
nil
(
E
var1
)
(
E
var2
)
.
End
Source
.
End
Source
.
Section
Closed
.
Module
Closed
.
Inductive
type
:
Type
:=
Inductive
type
:
Type
:=
|
TNat
:
type
|
TNat
:
type
|
Arrow
:
type
->
type
->
type
|
Arrow
:
type
->
type
->
type
...
@@ -181,6 +181,11 @@ Section Closed.
...
@@ -181,6 +181,11 @@ Section Closed.
->
exp
t1
->
exp
t1
|
Snd
:
forall
t1
t2
,
|
Snd
:
forall
t1
t2
,
exp
(
t1
**
t2
)
exp
(
t1
**
t2
)
->
exp
t2
|
Let
:
forall
t1
t2
,
exp
t1
->
(
var
t1
->
exp
t2
)
->
exp
t2
.
->
exp
t2
.
Section
funcs
.
Section
funcs
.
...
@@ -211,7 +216,7 @@ Section Closed.
...
@@ -211,7 +216,7 @@ Section Closed.
Notation
"^ n"
:=
(
Const
n
)
(
at
level
70
)
:
cc_scope
.
Notation
"^ n"
:=
(
Const
n
)
(
at
level
70
)
:
cc_scope
.
Infix
"+^"
:=
Plus
(
left
associativity
,
at
level
79
)
:
cc_scope
.
Infix
"+^"
:=
Plus
(
left
associativity
,
at
level
79
)
:
cc_scope
.
Infix
"@
@"
:=
App
(
no
associativity
,
at
level
75
)
:
cc_scope
.
Infix
"@
"
:=
App
(
left
associativity
,
at
level
77
)
:
cc_scope
.
Infix
"##"
:=
Pack
(
no
associativity
,
at
level
71
)
:
cc_scope
.
Infix
"##"
:=
Pack
(
no
associativity
,
at
level
71
)
:
cc_scope
.
Notation
"()"
:=
EUnit
:
cc_scope
.
Notation
"()"
:=
EUnit
:
cc_scope
.
...
@@ -220,10 +225,13 @@ Section Closed.
...
@@ -220,10 +225,13 @@ Section Closed.
Notation
"#1 x"
:=
(
Fst
x
)
(
at
level
72
)
:
cc_scope
.
Notation
"#1 x"
:=
(
Fst
x
)
(
at
level
72
)
:
cc_scope
.
Notation
"#2 x"
:=
(
Snd
x
)
(
at
level
72
)
:
cc_scope
.
Notation
"#2 x"
:=
(
Snd
x
)
(
at
level
72
)
:
cc_scope
.
Notation
"f <=
\\
x , y , e ; fs"
:=
Notation
"f <=
=
\\
x , y , e ; fs"
:=
(
Abs
(
fun
x
y
=>
e
)
(
fun
f
=>
fs
))
(
Abs
(
fun
x
y
=>
e
)
(
fun
f
=>
fs
))
(
right
associativity
,
at
level
80
,
e
at
next
level
)
:
cc_scope
.
(
right
associativity
,
at
level
80
,
e
at
next
level
)
:
cc_scope
.
Notation
"x <- e1 ; e2"
:=
(
Let
e1
(
fun
x
=>
e2
))
(
right
associativity
,
at
level
80
,
e1
at
next
level
)
:
cc_scope
.
Bind
Scope
cc_scope
with
exp
funcs
prog
.
Bind
Scope
cc_scope
with
exp
funcs
prog
.
Fixpoint
typeDenote
(
t
:
type
)
:
Set
:=
Fixpoint
typeDenote
(
t
:
type
)
:
Set
:=
...
@@ -250,6 +258,8 @@ Section Closed.
...
@@ -250,6 +258,8 @@ Section Closed.
|
Pair
_
_
e1
e2
=>
(
expDenote
e1
,
expDenote
e2
)
|
Pair
_
_
e1
e2
=>
(
expDenote
e1
,
expDenote
e2
)
|
Fst
_
_
e
'
=>
fst
(
expDenote
e
'
)
|
Fst
_
_
e
'
=>
fst
(
expDenote
e
'
)
|
Snd
_
_
e
'
=>
snd
(
expDenote
e
'
)
|
Snd
_
_
e
'
=>
snd
(
expDenote
e
'
)
|
Let
_
_
e1
e2
=>
expDenote
(
e2
(
expDenote
e1
))
end
.
end
.
Fixpoint
funcsDenote
T
(
fs
:
funcs
typeDenote
T
)
:
T
:=
Fixpoint
funcsDenote
T
(
fs
:
funcs
typeDenote
T
)
:
T
:=
...
@@ -269,3 +279,874 @@ Section Closed.
...
@@ -269,3 +279,874 @@ Section Closed.
Definition
ProgDenote
t
(
P
:
Prog
t
)
:=
progDenote
(
P
_
)
.
Definition
ProgDenote
t
(
P
:
Prog
t
)
:=
progDenote
(
P
_
)
.
End
Closed
.
End
Closed
.
Import
Source
Closed
.
Section
splice
.
Open
Local
Scope
cc_scope
.
Fixpoint
spliceFuncs
var
T1
(
fs
:
funcs
var
T1
)
T2
(
f
:
T1
->
funcs
var
T2
)
{
struct
fs
}
:
funcs
var
T2
:=
match
fs
with
|
Main
v
=>
f
v
|
Abs
_
_
_
e
fs
'
=>
Abs
e
(
fun
x
=>
spliceFuncs
(
fs
'
x
)
f
)
end
.
End
splice
.
Notation
"x <-- e1 ; e2"
:=
(
spliceFuncs
e1
(
fun
x
=>
e2
))
(
right
associativity
,
at
level
80
,
e1
at
next
level
)
:
cc_scope
.
Definition
natvar
(
_
:
Source
.
type
)
:=
nat
.
Definition
isfree
:=
hlist
(
fun
(
_
:
Source
.
type
)
=>
bool
)
.
Ltac
maybe_destruct
E
:=
match
goal
with
|
[
x
:
_
|-
_
]
=>
match
E
with
|
x
=>
idtac
end
|
_
=>
match
E
with
|
eq_nat_dec
_
_
=>
idtac
end
end
;
destruct
E
.
Ltac
my_crush
:=
crush
;
repeat
(
match
goal
with
|
[
x
:
(
_
*
_
)
%
type
|-
_
]
=>
destruct
x
|
[
|-
context
[
if
?
B
then
_
else
_
]
]
=>
maybe_destruct
B
|
[
_
:
context
[
if
?
B
then
_
else
_
]
|-
_
]
=>
maybe_destruct
B
end
;
crush
)
.
Section
isfree
.
Import
Source
.
Open
Local
Scope
source_scope
.
Hint
Extern
3
False
=>
omega
.
Fixpoint
lookup_type
(
envT
:
list
Source
.
type
)
(
n
:
nat
)
{
struct
envT
}
:
isfree
envT
->
option
Source
.
type
:=
match
envT
return
(
isfree
envT
->
_
)
with
|
nil
=>
fun
_
=>
None
|
first
::
rest
=>
fun
fvs
=>
if
eq_nat_dec
n
(
length
rest
)
then
match
fvs
with
|
(
true
,
_
)
=>
Some
first
|
(
false
,
_
)
=>
None
end
else
lookup_type
rest
n
(
snd
fvs
)
end
.
Implicit
Arguments
lookup_type
[
envT
]
.
Notation
ok
:=
(
fun
(
envT
:
list
Source
.
type
)
(
fvs
:
isfree
envT
)
(
n
:
nat
)
(
t
:
Source
.
type
)
=>
lookup_type
n
fvs
=
Some
t
)
.
Fixpoint
wfExp
(
envT
:
list
Source
.
type
)
(
fvs
:
isfree
envT
)
t
(
e
:
Source
.
exp
natvar
t
)
{
struct
e
}
:
Prop
:=
match
e
with
|
Var
t
v
=>
ok
envT
fvs
v
t
|
Const
_
=>
True
|
Plus
e1
e2
=>
wfExp
envT
fvs
e1
/
\
wfExp
envT
fvs
e2
|
App
_
_
e1
e2
=>
wfExp
envT
fvs
e1
/
\
wfExp
envT
fvs
e2
|
Abs
dom
_
e
'
=>
wfExp
(
dom
::
envT
)
(
true
:::
fvs
)
(
e
'
(
length
envT
))
end
.
Implicit
Arguments
wfExp
[
envT
t
]
.
Theorem
wfExp_weaken
:
forall
t
(
e
:
exp
natvar
t
)
envT
(
fvs
fvs
'
:
isfree
envT
)
,
wfExp
fvs
e
->
(
forall
n
t
,
ok
_
fvs
n
t
->
ok
_
fvs
'
n
t
)
->
wfExp
fvs
'
e
.
Hint
Extern
1
(
lookup_type
(
envT
:=
_
::
_
)
_
_
=
Some
_
)
=>
simpl
in
*;
my_crush
.
induction
e
;
my_crush
;
eauto
.
Defined
.
Fixpoint
isfree_none
(
envT
:
list
Source
.
type
)
:
isfree
envT
:=
match
envT
return
(
isfree
envT
)
with
|
nil
=>
tt
|
_
::
_
=>
(
false
,
isfree_none
_
)
end
.
Implicit
Arguments
isfree_none
[
envT
]
.
Fixpoint
isfree_one
(
envT
:
list
Source
.
type
)
(
n
:
nat
)
{
struct
envT
}
:
isfree
envT
:=
match
envT
return
(
isfree
envT
)
with
|
nil
=>
tt
|
_
::
rest
=>
if
eq_nat_dec
n
(
length
rest
)
then
(
true
,
isfree_none
)
else
(
false
,
isfree_one
_
n
)
end
.
Implicit
Arguments
isfree_one
[
envT
]
.
Fixpoint
isfree_merge
(
envT
:
list
Source
.
type
)
:
isfree
envT
->
isfree
envT
->
isfree
envT
:=
match
envT
return
(
isfree
envT
->
isfree
envT
->
isfree
envT
)
with
|
nil
=>
fun
_
_
=>
tt
|
_
::
_
=>
fun
fv1
fv2
=>
(
fst
fv1
||
fst
fv2
,
isfree_merge
_
(
snd
fv1
)
(
snd
fv2
))
end
.
Implicit
Arguments
isfree_merge
[
envT
]
.
Fixpoint
fvsExp
t
(
e
:
exp
natvar
t
)
(
envT
:
list
Source
.
type
)
{
struct
e
}
:
isfree
envT
:=
match
e
with
|
Var
_
n
=>
isfree_one
n
|
Const
_
=>
isfree_none
|
Plus
e1
e2
=>
isfree_merge
(
fvsExp
e1
envT
)
(
fvsExp
e2
envT
)
|
App
_
_
e1
e2
=>
isfree_merge
(
fvsExp
e1
envT
)
(
fvsExp
e2
envT
)
|
Abs
dom
_
e
'
=>
snd
(
fvsExp
(
e
'
(
length
envT
))
(
dom
::
envT
))
end
.
Lemma
isfree_one_correct
:
forall
t
(
v
:
natvar
t
)
envT
fvs
,
ok
envT
fvs
v
t
->
ok
envT
(
isfree_one
(
envT
:=
envT
)
v
)
v
t
.
induction
envT
;
my_crush
;
eauto
.
Defined
.
Lemma
isfree_merge_correct1
:
forall
t
(
v
:
natvar
t
)
envT
fvs1
fvs2
,
ok
envT
fvs1
v
t
->
ok
envT
(
isfree_merge
(
envT
:=
envT
)
fvs1
fvs2
)
v
t
.
induction
envT
;
my_crush
;
eauto
.
Defined
.
Hint
Rewrite
orb_true_r
:
cpdt
.
Lemma
isfree_merge_correct2
:
forall
t
(
v
:
natvar
t
)
envT
fvs1
fvs2
,
ok
envT
fvs2
v
t
->
ok
envT
(
isfree_merge
(
envT
:=
envT
)
fvs1
fvs2
)
v
t
.
induction
envT
;
my_crush
;
eauto
.
Defined
.
Hint
Resolve
isfree_one_correct
isfree_merge_correct1
isfree_merge_correct2
.
Lemma
fvsExp_correct
:
forall
t
(
e
:
exp
natvar
t
)
envT
(
fvs
:
isfree
envT
)
,
wfExp
fvs
e
->
forall
(
fvs
'
:
isfree
envT
)
,
(
forall
v
t
,
ok
envT
(
fvsExp
e
envT
)
v
t
->
ok
envT
fvs
'
v
t
)
->
wfExp
fvs
'
e
.
Hint
Extern
1
(
_
=
_
)
=>
match
goal
with
|
[
H
:
lookup_type
_
(
fvsExp
?
X
?
Y
)
=
_
|-
_
]
=>
destruct
(
fvsExp
X
Y
)
;
my_crush
end
.
induction
e
;
my_crush
;
eauto
.
Defined
.
Lemma
lookup_type_unique
:
forall
v
t1
t2
envT
(
fvs1
fvs2
:
isfree
envT
)
,
lookup_type
v
fvs1
=
Some
t1
->
lookup_type
v
fvs2
=
Some
t2
->
t1
=
t2
.
induction
envT
;
my_crush
;
eauto
.
Defined
.
Implicit
Arguments
lookup_type_unique
[
v
t1
t2
envT
fvs1
fvs2
]
.
Hint
Extern
2
(
lookup_type
_
_
=
Some
_
)
=>
match
goal
with
|
[
H1
:
lookup_type
?
v
_
=
Some
_
,
H2
:
lookup_type
?
v
_
=
Some
_
|-
_
]
=>
(
generalize
(
lookup_type_unique
H1
H2
)
;
intro
;
subst
)
||
rewrite
<-
(
lookup_type_unique
H1
H2
)
end
.
Lemma
lookup_none
:
forall
v
t
envT
,
lookup_type
(
envT
:=
envT
)
v
(
isfree_none
(
envT
:=
envT
))
=
Some
t
->
False
.
induction
envT
;
my_crush
.
Defined
.
Hint
Extern
2
(
_
=
_
)
=>
elimtype
False
;
eapply
lookup_none
;
eassumption
.
Lemma
lookup_one
:
forall
v
'
v
t
envT
,
lookup_type
(
envT
:=
envT
)
v
'
(
isfree_one
(
envT
:=
envT
)
v
)
=
Some
t
->
v
'
=
v
.
induction
envT
;
my_crush
.
Defined
.
Implicit
Arguments
lookup_one
[
v
'
v
t
envT
]
.
Hint
Extern
2
(
lookup_type
_
_
=
Some
_
)
=>
match
goal
with
|
[
H
:
lookup_type
_
_
=
Some
_
|-
_
]
=>
generalize
(
lookup_one
H
)
;
intro
;
subst
end
.
Lemma
lookup_merge
:
forall
v
t
envT
(
fvs1
fvs2
:
isfree
envT
)
,
lookup_type
v
(
isfree_merge
fvs1
fvs2
)
=
Some
t
->
lookup_type
v
fvs1
=
Some
t
\
/
lookup_type
v
fvs2
=
Some
t
.
induction
envT
;
my_crush
.
Defined
.
Implicit
Arguments
lookup_merge
[
v
t
envT
fvs1
fvs2
]
.
Lemma
lookup_bound
:
forall
v
t
envT
(
fvs
:
isfree
envT
)
,
lookup_type
v
fvs
=
Some
t
->
v
<
length
envT
.
Hint
Resolve
lt_S
.
induction
envT
;
my_crush
;
eauto
.
Defined
.
Hint
Resolve
lookup_bound
.
Lemma
lookup_bound_contra
:
forall
t
envT
(
fvs
:
isfree
envT
)
,
lookup_type
(
length
envT
)
fvs
=
Some
t
->
False
.
intros
;
assert
(
length
envT
<
length
envT
)
;
eauto
.
Defined
.
Hint
Resolve
lookup_bound_contra
.
Hint
Extern
3
(
_
=
_
)
=>
elimtype
False
;
omega
.
Lemma
lookup_push_drop
:
forall
v
t
t
'
envT
fvs
,
v
<
length
envT
->
lookup_type
(
envT
:=
t
::
envT
)
v
(
true
,
fvs
)
=
Some
t
'
->
lookup_type
(
envT
:=
envT
)
v
fvs
=
Some
t
'
.
my_crush
.
Defined
.
Lemma
lookup_push_add
:
forall
v
t
t
'
envT
fvs
,
lookup_type
(
envT
:=
envT
)
v
(
snd
fvs
)
=
Some
t
'
->
lookup_type
(
envT
:=
t
::
envT
)
v
fvs
=
Some
t
'
.
my_crush
;
elimtype
False
;
eauto
.
Defined
.
Hint
Resolve
lookup_bound
lookup_push_drop
lookup_push_add
.
Theorem
fvsExp_minimal
:
forall
t
(
e
:
exp
natvar
t
)
envT
(
fvs
:
isfree
envT
)
,
wfExp
fvs
e
->
(
forall
v
t
,
ok
envT
(
fvsExp
e
envT
)
v
t
->
ok
envT
fvs
v
t
)
.
Hint
Extern
1
(
_
=
_
)
=>
match
goal
with
|
[
H
:
lookup_type
_
(
isfree_merge
_
_
)
=
Some
_
|-
_
]
=>
destruct
(
lookup_merge
H
)
;
clear
H
;
eauto
end
.
induction
e
;
my_crush
;
eauto
.
Defined
.
Fixpoint
ccType
(
t
:
Source
.
type
)
:
Closed
.
type
:=
match
t
with
|
Nat
%
source
=>
Nat
|
(
dom
-->
ran
)
%
source
=>
ccType
dom
-->
ccType
ran
end
%
cc
.
Open
Local
Scope
cc_scope
.
Fixpoint
envType
(
envT
:
list
Source
.
type
)
:
isfree
envT
->
Closed
.
type
:=
match
envT
return
(
isfree
envT
->
_
)
with
|
nil
=>
fun
_
=>
Unit
|
t
::
_
=>
fun
tup
=>
if
fst
tup
then
ccType
t
**
envType
_
(
snd
tup
)
else
envType
_
(
snd
tup
)
end
.
Implicit
Arguments
envType
[
envT
]
.
Fixpoint
envOf
(
var
:
Closed
.
type
->
Set
)
(
envT
:
list
Source
.
type
)
{
struct
envT
}
:
isfree
envT
->
Set
:=
match
envT
return
(
isfree
envT
->
_
)
with
|
nil
=>
fun
_
=>
unit
|
first
::
rest
=>
fun
fvs
=>
match
fvs
with
|
(
true
,
fvs
'
)
=>
(
var
(
ccType
first
)
*
envOf
var
rest
fvs
'
)
%
type
|
(
false
,
fvs
'
)
=>
envOf
var
rest
fvs
'
end
end
.
Implicit
Arguments
envOf
[
envT
]
.
Notation
"var <| to"
:=
(
match
to
with
|
None
=>
unit
|
Some
t
=>
var
(
ccType
t
)
end
)
(
no
associativity
,
at
level
70
)
.
Fixpoint
lookup
(
var
:
Closed
.
type
->
Set
)
(
envT
:
list
Source
.
type
)
:
forall
(
n
:
nat
)
(
fvs
:
isfree
envT
)
,
envOf
var
fvs
->
var
<|
lookup_type
n
fvs
:=
match
envT
return
(
forall
(
n
:
nat
)
(
fvs
:
isfree
envT
)
,
envOf
var
fvs
->
var
<|
lookup_type
n
fvs
)
with
|
nil
=>
fun
_
_
_
=>
tt
|
first
::
rest
=>
fun
n
fvs
=>
match
(
eq_nat_dec
n
(
length
rest
))
as
Heq
return
(
envOf
var
(
envT
:=
first
::
rest
)
fvs
->
var
<|
(
if
Heq
then
match
fvs
with
|
(
true
,
_
)
=>
Some
first
|
(
false
,
_
)
=>
None
end
else
lookup_type
n
(
snd
fvs
)))
with
|
left
_
=>
match
fvs
return
(
envOf
var
(
envT
:=
first
::
rest
)
fvs
->
var
<|
(
match
fvs
with
|
(
true
,
_
)
=>
Some
first
|
(
false
,
_
)
=>
None
end
))
with
|
(
true
,
_
)
=>
fun
env
=>
fst
env
|
(
false
,
_
)
=>
fun
_
=>
tt
end
|
right
_
=>
match
fvs
return
(
envOf
var
(
envT
:=
first
::
rest
)
fvs
->
var
<|
(
lookup_type
n
(
snd
fvs
)))
with
|
(
true
,
fvs
'
)
=>
fun
env
=>
lookup
var
rest
n
fvs
'
(
snd
env
)
|
(
false
,
fvs
'
)
=>
fun
env
=>
lookup
var
rest
n
fvs
'
env
end
end
end
.
Theorem
lok
:
forall
var
n
t
envT
(
fvs
:
isfree
envT
)
,
lookup_type
n
fvs
=
Some
t
->
var
<|
lookup_type
n
fvs
=
var
(
ccType
t
)
.
crush
.
Defined
.
End
isfree
.
Implicit
Arguments
lookup_type
[
envT
]
.
Implicit
Arguments
lookup
[
envT
fvs
]
.
Implicit
Arguments
wfExp
[
t
envT
]
.
Implicit
Arguments
envType
[
envT
]
.
Implicit
Arguments
envOf
[
envT
]
.
Implicit
Arguments
lok
[
var
n
t
envT
fvs
]
.
Section
lookup_hints
.
Hint
Resolve
lookup_bound_contra
.
(
*
Ltac
my_chooser
T
k
:=
match
T
with
|
ptype
=>
match
goal
with
|
[
H
:
lookup
_
_
=
Some
?
t
|-
_
]
=>
k
t
end
|
_
=>
default_chooser
T
k
end
.
Ltac
my_matching
:=
matching
equation
my_chooser
.*
)
Hint
Resolve
lookup_bound_contra
.
Lemma
lookup_type_push
:
forall
t
'
envT
(
fvs1
fvs2
:
isfree
envT
)
b1
b2
,
(
forall
(
n
:
nat
)
(
t
:
Source
.
type
)
,
lookup_type
(
envT
:=
t
'
::
envT
)
n
(
b1
,
fvs1
)
=
Some
t
->
lookup_type
(
envT
:=
t
'
::
envT
)
n
(
b2
,
fvs2
)
=
Some
t
)
->
(
forall
(
n
:
nat
)
(
t
:
Source
.
type
)
,
lookup_type
n
fvs1
=
Some
t
->
lookup_type
n
fvs2
=
Some
t
)
.
intros
until
b2
;
intro
H
;
intros
n
t
;
generalize
(
H
n
t
)
;
my_crush
;
elimtype
False
;
eauto
.
Defined
.
Lemma
lookup_type_push_contra
:
forall
t
'
envT
(
fvs1
fvs2
:
isfree
envT
)
,
(
forall
(
n
:
nat
)
(
t
:
Source
.
type
)
,
lookup_type
(
envT
:=
t
'
::
envT
)
n
(
true
,
fvs1
)
=
Some
t
->
lookup_type
(
envT
:=
t
'
::
envT
)
n
(
false
,
fvs2
)
=
Some
t
)
->
False
.
intros
until
fvs2
;
intro
H
;
generalize
(
H
(
length
envT
)
t
'
)
;
my_crush
.
Defined
.
End
lookup_hints
.
Section
packing
.
Open
Local
Scope
cc_scope
.
Hint
Resolve
lookup_type_push
lookup_type_push_contra
.
Definition
packExp
(
var
:
Closed
.
type
->
Set
)
(
envT
:
list
Source
.
type
)
(
fvs1
fvs2
:
isfree
envT
)
:
(
forall
n
t
,
lookup_type
n
fvs1
=
Some
t
->
lookup_type
n
fvs2
=
Some
t
)
->
envOf
var
fvs2
->
exp
var
(
envType
fvs1
)
.
refine
(
fix
packExp
(
var
:
Closed
.
type
->
Set
)
(
envT
:
list
Source
.
type
)
{
struct
envT
}
:
forall
fvs1
fvs2
:
isfree
envT
,
(
forall
n
t
,
lookup_type
n
fvs1
=
Some
t
->
lookup_type
n
fvs2
=
Some
t
)
->
envOf
var
fvs2
->
exp
var
(
envType
fvs1
)
:=
match
envT
return
(
forall
fvs1
fvs2
:
isfree
envT
,
(
forall
n
t
,
lookup_type
n
fvs1
=
Some
t
->
lookup_type
n
fvs2
=
Some
t
)
->
envOf
var
fvs2
->
exp
var
(
envType
fvs1
))
with
|
nil
=>
fun
_
_
_
_
=>
()
|
first
::
rest
=>
fun
fvs1
=>
match
fvs1
return
(
forall
fvs2
:
isfree
(
first
::
rest
)
,
(
forall
n
t
,
lookup_type
(
envT
:=
first
::
rest
)
n
fvs1
=
Some
t
->
lookup_type
n
fvs2
=
Some
t
)
->
envOf
var
fvs2
->
exp
var
(
envType
(
envT
:=
first
::
rest
)
fvs1
))
with
|
(
false
,
fvs1
'
)
=>
fun
fvs2
=>
match
fvs2
return
((
forall
n
t
,
lookup_type
(
envT
:=
first
::
rest
)
n
(
false
,
fvs1
'
)
=
Some
t
->
lookup_type
(
envT
:=
first
::
rest
)
n
fvs2
=
Some
t
)
->
envOf
(
envT
:=
first
::
rest
)
var
fvs2
->
exp
var
(
envType
(
envT
:=
first
::
rest
)
(
false
,
fvs1
'
)))
with
|
(
false
,
fvs2
'
)
=>
fun
Hmin
env
=>
packExp
var
_
fvs1
'
fvs2
'
_
env
|
(
true
,
fvs2
'
)
=>
fun
Hmin
env
=>
packExp
var
_
fvs1
'
fvs2
'
_
(
snd
env
)
end
|
(
true
,
fvs1
'
)
=>
fun
fvs2
=>
match
fvs2
return
((
forall
n
t
,
lookup_type
(
envT
:=
first
::
rest
)
n
(
true
,
fvs1
'
)
=
Some
t
->
lookup_type
(
envT
:=
first
::
rest
)
n
fvs2
=
Some
t
)
->
envOf
(
envT
:=
first
::
rest
)
var
fvs2
->
exp
var
(
envType
(
envT
:=
first
::
rest
)
(
true
,
fvs1
'
)))
with
|
(
false
,
fvs2
'
)
=>
fun
Hmin
env
=>
False_rect
_
_
|
(
true
,
fvs2
'
)
=>
fun
Hmin
env
=>
[#(
fst
env
)
,
packExp
var
_
fvs1
'
fvs2
'
_
(
snd
env
)]
end
end
end
)
;
eauto
.
Defined
.
Hint
Resolve
fvsExp_correct
fvsExp_minimal
.
Hint
Resolve
lookup_push_drop
lookup_bound
lookup_push_add
.
Implicit
Arguments
packExp
[
var
envT
]
.
Fixpoint
unpackExp
(
var
:
Closed
.
type
->
Set
)
t
(
envT
:
list
Source
.
type
)
{
struct
envT
}
:
forall
fvs
:
isfree
envT
,
exp
var
(
envType
fvs
)
->
(
envOf
var
fvs
->
exp
var
t
)
->
exp
var
t
:=
match
envT
return
(
forall
fvs
:
isfree
envT
,
exp
var
(
envType
fvs
)
->
(
envOf
var
fvs
->
exp
var
t
)
->
exp
var
t
)
with
|
nil
=>
fun
_
_
f
=>
f
tt
|
first
::
rest
=>
fun
fvs
=>
match
fvs
return
(
exp
var
(
envType
(
envT
:=
first
::
rest
)
fvs
)
->
(
envOf
var
(
envT
:=
first
::
rest
)
fvs
->
exp
var
t
)
->
exp
var
t
)
with
|
(
false
,
fvs
'
)
=>
fun
p
f
=>
unpackExp
rest
fvs
'
p
f
|
(
true
,
fvs
'
)
=>
fun
p
f
=>
x
<-
#
1
p
;
unpackExp
rest
fvs
'
(#
2
p
)
(
fun
env
=>
f
(
x
,
env
))
end
end
.
Implicit
Arguments
unpackExp
[
var
t
envT
fvs
]
.
Theorem
wfExp_lax
:
forall
t
t
'
envT
(
fvs
:
isfree
envT
)
(
e
:
Source
.
exp
natvar
t
)
,
wfExp
(
envT
:=
t
'
::
envT
)
(
true
,
fvs
)
e
->
wfExp
(
envT
:=
t
'
::
envT
)
(
true
,
snd
(
fvsExp
e
(
t
'
::
envT
)))
e
.
Hint
Extern
1
(
_
=
_
)
=>
match
goal
with
|
[
H
:
lookup_type
_
(
fvsExp
?
X
?
Y
)
=
_
|-
_
]
=>
destruct
(
fvsExp
X
Y
)
;
my_crush
end
.
eauto
.
Defined
.
Implicit
Arguments
wfExp_lax
[
t
t
'
envT
fvs
e
]
.
Lemma
inclusion
:
forall
t
t
'
envT
fvs
(
e
:
Source
.
exp
natvar
t
)
,
wfExp
(
envT
:=
t
'
::
envT
)
(
true
,
fvs
)
e
->
(
forall
n
t
,
lookup_type
n
(
snd
(
fvsExp
e
(
t
'
::
envT
)))
=
Some
t
->
lookup_type
n
fvs
=
Some
t
)
.
eauto
.
Defined
.
Implicit
Arguments
inclusion
[
t
t
'
envT
fvs
e
]
.
Definition
env_prog
var
t
envT
(
fvs
:
isfree
envT
)
:=
funcs
var
(
envOf
var
fvs
->
Closed
.
exp
var
t
)
.
Implicit
Arguments
env_prog
[
envT
]
.
Axiom
cheat
:
forall
T
,
T
.
Import
Source
.
Open
Local
Scope
cc_scope
.
Fixpoint
ccExp
var
t
(
e
:
Source
.
exp
natvar
t
)
(
envT
:
list
Source
.
type
)
(
fvs
:
isfree
envT
)
{
struct
e
}
:
wfExp
fvs
e
->
env_prog
var
(
ccType
t
)
fvs
:=
match
e
in
(
Source
.
exp
_
t
)
return
(
wfExp
fvs
e
->
env_prog
var
(
ccType
t
)
fvs
)
with
|
Const
n
=>
fun
_
=>
Main
(
fun
_
=>
^
n
)
|
Plus
e1
e2
=>
fun
wf
=>
n1
<--
ccExp
var
e1
_
fvs
(
proj1
wf
)
;
n2
<--
ccExp
var
e2
_
fvs
(
proj2
wf
)
;
Main
(
fun
env
=>
n1
env
+^
n2
env
)
|
Var
_
n
=>
fun
wf
=>
Main
(
fun
env
=>
#(
match
lok
wf
in
_
=
T
return
T
with
|
refl_equal
=>
lookup
var
n
env
end
))
|
App
_
_
f
x
=>
fun
wf
=>
f
'
<--
ccExp
var
f
_
fvs
(
proj1
wf
)
;
x
'
<--
ccExp
var
x
_
fvs
(
proj2
wf
)
;
Main
(
fun
env
=>
f
'
env
@
x
'
env
)
|
Abs
dom
_
b
=>
fun
wf
=>
b
'
<--
ccExp
var
(
b
(
length
envT
))
(
dom
::
envT
)
_
(
wfExp_lax
wf
)
;
f
<==
\\
env
,
arg
,
unpackExp
(#
env
)
(
fun
env
=>
b
'
(
arg
,
env
))
;
Main
(
fun
env
=>
#
f
##
packExp
(
snd
(
fvsExp
(
b
(
length
envT
))
(
dom
::
envT
)))
fvs
(
inclusion
wf
)
env
)
end
.
End
packing
.
Implicit
Arguments
packExp
[
var
envT
]
.
Implicit
Arguments
unpackExp
[
var
t
envT
fvs
]
.
Implicit
Arguments
ccExp
[
var
t
envT
]
.
Fixpoint
map_funcs
var
result
T1
T2
(
f
:
T1
->
T2
)
(
fs
:
cfuncs
var
result
T1
)
{
struct
fs
}
:
cfuncs
var
result
T2
:=
match
fs
with
|
CMain
v
=>
CMain
(
f
v
)
|
CAbs
_
_
e
fs
'
=>
CAbs
e
(
fun
x
=>
map_funcs
f
(
fs
'
x
))
end
.
Definition
CcTerm
'
result
(
E
:
Pterm
result
)
(
Hwf
:
wfTerm
(
envT
:=
nil
)
tt
(
E
_
))
:
Cprog
result
:=
fun
_
=>
map_funcs
(
fun
f
=>
f
tt
)
(
ccTerm
(
E
_
)
(
envT
:=
nil
)
tt
Hwf
)
.
(
**
*
Correctness
*
)
Scheme
pterm_equiv_mut
:=
Minimality
for
pterm_equiv
Sort
Prop
with
pprimop_equiv_mut
:=
Minimality
for
pprimop_equiv
Sort
Prop
.
Section
splicePrim_correct
.
Variables
result
t
t
'
:
ptype
.
Variable
ps
'
:
ctypeDenote
([
<
t
>
])
->
cprimops
ctypeDenote
t
'
.
Theorem
splicePrim_correct
:
forall
(
ps
:
cprimops
ctypeDenote
t
)
,
cprimopsDenote
(
splicePrim
ps
ps
'
)
=
cprimopsDenote
(
ps
'
(
cprimopsDenote
ps
))
.
induction
ps
;
equation
.
Qed
.
End
splicePrim_correct
.
Section
spliceTerm_correct
.
Variables
result
t
:
ptype
.
Variable
e
:
ctypeDenote
([
<
t
>
])
->
cterm
ctypeDenote
result
.
Variable
k
:
ptypeDenote
result
->
bool
.
Theorem
spliceTerm_correct
:
forall
(
ps
:
cprimops
ctypeDenote
t
)
,
ctermDenote
(
spliceTerm
ps
e
)
k
=
ctermDenote
(
e
(
cprimopsDenote
ps
))
k
.
induction
ps
;
equation
.
Qed
.
End
spliceTerm_correct
.
Section
spliceFuncs
'_
correct
.
Variable
result
:
ptype
.
Variables
T1
T2
:
Type
.
Variable
f
:
T1
->
T2
.
Variable
k
:
ptypeDenote
result
->
bool
.
Theorem
spliceFuncs
'_
correct
:
forall
fs
,
cfuncsDenote
(
spliceFuncs
'
fs
f
)
k
=
f
(
cfuncsDenote
fs
k
)
.
induction
fs
;
equation
.
Qed
.
End
spliceFuncs
'_
correct
.
Section
spliceFuncs_correct
.
Variable
result
:
ptype
.
Variables
T1
T2
T3
:
Type
.
Variable
fs2
:
cfuncs
ctypeDenote
result
T2
.
Variable
f
:
T1
->
T2
->
T3
.
Variable
k
:
ptypeDenote
result
->
bool
.
Hint
Rewrite
spliceFuncs
'_
correct
:
ltamer
.
Theorem
spliceFuncs_correct
:
forall
fs1
,
cfuncsDenote
(
spliceFuncs
fs1
fs2
f
)
k
=
f
(
cfuncsDenote
fs1
k
)
(
cfuncsDenote
fs2
k
)
.
induction
fs1
;
equation
.
Qed
.
End
spliceFuncs_correct
.
Section
inside_correct
.
Variable
result
:
ptype
.
Variables
T1
T2
:
Type
.
Variable
fs2
:
T1
->
cfuncs
ctypeDenote
result
T2
.
Variable
k
:
ptypeDenote
result
->
bool
.
Theorem
inside_correct
:
forall
fs1
,
cfuncsDenote
(
inside
fs1
fs2
)
k
=
cfuncsDenote
(
fs2
(
cfuncsDenote
fs1
k
))
k
.
induction
fs1
;
equation
.
Qed
.
End
inside_correct
.
Notation
"var <| to"
:=
(
match
to
with
|
None
=>
unit
|
Some
t
=>
var
([
<
t
>
])
%
cc
end
)
(
no
associativity
,
at
level
70
)
.
Section
packing_correct
.
Variable
result
:
ptype
.
Hint
Rewrite
splicePrim_correct
spliceTerm_correct
:
ltamer
.
Ltac
my_matching
:=
matching
my_equation
default_chooser
.
Fixpoint
makeEnv
(
envT
:
list
ptype
)
:
forall
(
fvs
:
isfree
envT
)
,
ptypeDenote
(
envType
fvs
)
->
envOf
ctypeDenote
fvs
:=
match
envT
return
(
forall
(
fvs
:
isfree
envT
)
,
ptypeDenote
(
envType
fvs
)
->
envOf
ctypeDenote
fvs
)
with
|
nil
=>
fun
_
_
=>
tt
|
first
::
rest
=>
fun
fvs
=>
match
fvs
return
(
ptypeDenote
(
envType
(
envT
:=
first
::
rest
)
fvs
)
->
envOf
(
envT
:=
first
::
rest
)
ctypeDenote
fvs
)
with
|
(
false
,
fvs
'
)
=>
fun
env
=>
makeEnv
rest
fvs
'
env
|
(
true
,
fvs
'
)
=>
fun
env
=>
(
fst
env
,
makeEnv
rest
fvs
'
(
snd
env
))
end
end
.
Theorem
unpackExp_correct
:
forall
(
envT
:
list
ptype
)
(
fvs
:
isfree
envT
)
(
ps
:
cprimops
ctypeDenote
(
envType
fvs
))
(
e
:
envOf
ctypeDenote
fvs
->
cterm
ctypeDenote
result
)
k
,
ctermDenote
(
unpackExp
ps
e
)
k
=
ctermDenote
(
e
(
makeEnv
_
_
(
cprimopsDenote
ps
)))
k
.
induction
envT
;
my_matching
.
Qed
.
Lemma
lookup_type_more
:
forall
v2
envT
(
fvs
:
isfree
envT
)
t
b
v
,
(
v2
=
length
envT
->
False
)
->
lookup_type
v2
(
envT
:=
t
::
envT
)
(
b
,
fvs
)
=
v
->
lookup_type
v2
fvs
=
v
.
equation
.
Qed
.
Lemma
lookup_type_less
:
forall
v2
t
envT
(
fvs
:
isfree
(
t
::
envT
))
v
,
(
v2
=
length
envT
->
False
)
->
lookup_type
v2
(
snd
fvs
)
=
v
->
lookup_type
v2
(
envT
:=
t
::
envT
)
fvs
=
v
.
equation
.
Qed
.
Lemma
lookup_bound_contra_eq
:
forall
t
envT
(
fvs
:
isfree
envT
)
v
,
lookup_type
v
fvs
=
Some
t
->
v
=
length
envT
->
False
.
simpler
;
eapply
lookup_bound_contra
;
eauto
.
Defined
.
Lemma
lookup_type_inner
:
forall
result
t
envT
v
t
'
(
fvs
:
isfree
envT
)
e
,
wfTerm
(
envT
:=
t
::
envT
)
(
true
,
fvs
)
e
->
lookup_type
v
(
snd
(
fvsTerm
(
result
:=
result
)
e
(
t
::
envT
)))
=
Some
t
'
->
lookup_type
v
fvs
=
Some
t
'
.
Hint
Resolve
lookup_bound_contra_eq
fvsTerm_minimal
lookup_type_more
lookup_type_less
.
Hint
Extern
2
(
Some
_
=
Some
_
)
=>
contradictory
.
eauto
6.
Qed
.
Lemma
cast_irrel
:
forall
T1
T2
x
(
H1
H2
:
T1
=
T2
)
,
(
x
:?
H1
)
=
(
x
:?
H2
)
.
equation
.
Qed
.
Hint
Immediate
cast_irrel
.
Lemma
cast_irrel_unit
:
forall
T1
T2
x
y
(
H1
:
T1
=
T2
)
(
H2
:
unit
=
T2
)
,
(
x
:?
H1
)
=
(
y
:?
H2
)
.
intros
;
generalize
H1
;
rewrite
<-
H2
in
H1
;
equation
.
Qed
.
Hint
Immediate
cast_irrel_unit
.
Hint
Extern
3
(
_
=
_
)
=>
match
goal
with
|
[
|-
context
[
False_rect
_
?
H
]
]
=>
apply
False_rect
;
exact
H
end
.
Theorem
packExp_correct
:
forall
v2
t
envT
(
fvs1
fvs2
:
isfree
envT
)
Heq1
(
Heq2
:
ctypeDenote
<|
lookup_type
v2
fvs2
=
ptypeDenote
t
)
Hincl
env
,
(
lookup
ctypeDenote
v2
env
:?
Heq2
)
=
(
lookup
ctypeDenote
v2
(
makeEnv
envT
fvs1
(
cprimopsDenote
(
packExp
fvs1
fvs2
Hincl
env
)))
:?
Heq1
)
.
induction
envT
;
my_equation
.
Qed
.
End
packing_correct
.
Lemma
look
:
forall
envT
n
(
fvs
:
isfree
envT
)
t
,
lookup_type
n
fvs
=
Some
t
->
ctypeDenote
<|
lookup_type
n
fvs
=
ptypeDenote
t
.
equation
.
Qed
.
Implicit
Arguments
look
[
envT
n
fvs
t
]
.
Theorem
ccTerm_correct
:
forall
result
G
(
e1
:
pterm
ptypeDenote
result
)
(
e2
:
pterm
natvar
result
)
,
pterm_equiv
G
e1
e2
->
forall
(
envT
:
list
ptype
)
(
fvs
:
isfree
envT
)
(
env
:
envOf
ctypeDenote
fvs
)
(
Hwf
:
wfTerm
fvs
e2
)
k
,
(
forall
t
(
v1
:
ptypeDenote
t
)
(
v2
:
natvar
t
)
,
In
(
vars
(
x
:=
t
)
(
v1
,
v2
))
G
->
v2
<
length
envT
)
->
(
forall
t
(
v1
:
ptypeDenote
t
)
(
v2
:
natvar
t
)
,
In
(
vars
(
x
:=
t
)
(
v1
,
v2
))
G
->
lookup_type
v2
fvs
=
Some
t
->
forall
Heq
,
(
lookup
ctypeDenote
v2
env
:?
Heq
)
=
v1
)
->
ptermDenote
e1
k
=
ctermDenote
(
cfuncsDenote
(
ccTerm
e2
fvs
Hwf
)
k
env
)
k
.
Hint
Rewrite
splicePrim_correct
spliceTerm_correct
spliceFuncs_correct
inside_correct
:
ltamer
.
Hint
Rewrite
unpackExp_correct
:
ltamer
.
Hint
Resolve
packExp_correct
lookup_type_inner
.
Hint
Extern
1
(
_
=
_
)
=>
push_vars
.
Hint
Extern
1
(
_
=
_
)
=>
match
goal
with
|
[
Hvars
:
forall
t
v1
v2
,
_
,
Hin
:
In
_
_
|-
_
]
=>
rewrite
(
Hvars
_
_
_
Hin
)
end
.
Hint
Extern
1
(
wfPrimop
_
_
)
=>
tauto
.
Hint
Extern
1
(
_
<
_
)
=>
match
goal
with
|
[
Hvars
:
forall
t
v1
v2
,
_
,
Hin
:
In
_
_
|-
_
]
=>
exact
(
Hvars
_
_
_
Hin
)
end
.
Hint
Extern
1
(
lookup_type
_
_
=
_
)
=>
tauto
.
Hint
Extern
1
(
_
=
_
)
=>
match
goal
with
|
[
Hvars
:
forall
t
v1
v2
,
_
,
Hin
:
In
(
vars
(
_
,
length
?
envT
))
_
|-
_
]
=>
contradictory
;
assert
(
length
envT
<
length
envT
)
;
[
auto
|
omega
]
end
.
Hint
Extern
5
(
_
=
_
)
=>
symmetry
.
Hint
Extern
1
(
_
=
_
)
=>
match
goal
with
|
[
H
:
lookup_type
?
v
_
=
Some
?
t
,
fvs
:
isfree
_
|-
(
lookup
_
_
_
:?
_
)
=
_
]
=>
let
Hty
:=
fresh
"Hty"
in
(
assert
(
Hty
:
lookup_type
v
fvs
=
Some
t
)
;
[
eauto
|
eapply
(
trans_cast
(
look
Hty
))])
end
.
Hint
Extern
3
(
ptermDenote
_
_
=
ctermDenote
_
_
)
=>
match
goal
with
|
[
H
:
_
|-
ptermDenote
(
_
?
v1
)
_
=
ctermDenote
(
cfuncsDenote
(
ccTerm
(
_
?
v2
)
(
envT
:=
?
envT
)
?
fvs
_
)
_
_
)
_
]
=>
apply
(
H
v1
v2
envT
fvs
)
;
my_simpler
end
.
intro
.
apply
(
pterm_equiv_mut
(
fun
G
(
e1
:
pterm
ptypeDenote
result
)
(
e2
:
pterm
natvar
result
)
=>
forall
(
envT
:
list
ptype
)
(
fvs
:
isfree
envT
)
(
env
:
envOf
ctypeDenote
fvs
)
(
Hwf
:
wfTerm
fvs
e2
)
k
,
(
forall
t
(
v1
:
ptypeDenote
t
)
(
v2
:
natvar
t
)
,
In
(
vars
(
x
:=
t
)
(
v1
,
v2
))
G
->
v2
<
length
envT
)
->
(
forall
t
(
v1
:
ptypeDenote
t
)
(
v2
:
natvar
t
)
,
In
(
vars
(
x
:=
t
)
(
v1
,
v2
))
G
->
lookup_type
v2
fvs
=
Some
t
->
forall
Heq
,
(
lookup
ctypeDenote
v2
env
:?
Heq
)
=
v1
)
->
ptermDenote
e1
k
=
ctermDenote
(
cfuncsDenote
(
ccTerm
e2
fvs
Hwf
)
k
env
)
k
)
(
fun
G
t
(
p1
:
pprimop
ptypeDenote
result
t
)
(
p2
:
pprimop
natvar
result
t
)
=>
forall
(
envT
:
list
ptype
)
(
fvs
:
isfree
envT
)
(
env
:
envOf
ctypeDenote
fvs
)
(
Hwf
:
wfPrimop
fvs
p2
)
Hwf
k
,
(
forall
t
(
v1
:
ptypeDenote
t
)
(
v2
:
natvar
t
)
,
In
(
vars
(
x
:=
t
)
(
v1
,
v2
))
G
->
v2
<
length
envT
)
->
(
forall
t
(
v1
:
ptypeDenote
t
)
(
v2
:
natvar
t
)
,
In
(
vars
(
x
:=
t
)
(
v1
,
v2
))
G
->
lookup_type
v2
fvs
=
Some
t
->
forall
Heq
,
(
lookup
ctypeDenote
v2
env
:?
Heq
)
=
v1
)
->
pprimopDenote
p1
k
=
cprimopsDenote
(
cfuncsDenote
(
ccPrimop
p2
fvs
Hwf
)
k
env
)))
;
my_simpler
;
eauto
.
Qed
.
(
**
*
Parametric
version
*
)
Section
wf
.
Variable
result
:
ptype
.
Lemma
Pterm_wf
'
:
forall
G
(
e1
e2
:
pterm
natvar
result
)
,
pterm_equiv
G
e1
e2
->
forall
envT
(
fvs
:
isfree
envT
)
,
(
forall
t
(
v1
v2
:
natvar
t
)
,
In
(
vars
(
v1
,
v2
))
G
->
lookup_type
v1
fvs
=
Some
t
)
->
wfTerm
fvs
e1
.
Hint
Extern
3
(
Some
_
=
Some
_
)
=>
contradictory
;
eapply
lookup_bound_contra
;
eauto
.
apply
(
pterm_equiv_mut
(
fun
G
(
e1
e2
:
pterm
natvar
result
)
=>
forall
envT
(
fvs
:
isfree
envT
)
,
(
forall
t
(
v1
v2
:
natvar
t
)
,
In
(
vars
(
v1
,
v2
))
G
->
lookup_type
v1
fvs
=
Some
t
)
->
wfTerm
(
envT
:=
envT
)
fvs
e1
)
(
fun
G
t
(
p1
p2
:
pprimop
natvar
result
t
)
=>
forall
envT
(
fvs
:
isfree
envT
)
,
(
forall
t
(
v1
v2
:
natvar
t
)
,
In
(
vars
(
v1
,
v2
))
G
->
lookup_type
v1
fvs
=
Some
t
)
->
wfPrimop
(
envT
:=
envT
)
fvs
p1
))
;
simpler
;
match
goal
with
|
[
envT
:
list
ptype
,
H
:
_
|-
_
]
=>
apply
(
H
(
length
envT
)
(
length
envT
))
;
simpler
end
.
Qed
.
Theorem
Pterm_wf
:
forall
(
E
:
Pterm
result
)
,
wfTerm
(
envT
:=
nil
)
tt
(
E
_
)
.
intros
;
eapply
Pterm_wf
'
;
[
apply
Pterm_equiv
|
simpler
]
.
Qed
.
End
wf
.
Definition
CcTerm
result
(
E
:
Pterm
result
)
:
Cprog
result
:=
CcTerm
'
E
(
Pterm_wf
E
)
.
Lemma
map_funcs_correct
:
forall
result
T1
T2
(
f
:
T1
->
T2
)
(
fs
:
cfuncs
ctypeDenote
result
T1
)
k
,
cfuncsDenote
(
map_funcs
f
fs
)
k
=
f
(
cfuncsDenote
fs
k
)
.
induction
fs
;
equation
.
Qed
.
Theorem
CcTerm_correct
:
forall
result
(
E
:
Pterm
result
)
k
,
PtermDenote
E
k
=
CprogDenote
(
CcTerm
E
)
k
.
Hint
Rewrite
map_funcs_correct
:
ltamer
.
unfold
PtermDenote
,
CprogDenote
,
CcTerm
,
CcTerm
'
,
cprogDenote
;
simpler
;
apply
(
ccTerm_correct
(
result
:=
result
)
(
G
:=
nil
)
(
e1
:=
E
_
)
(
e2
:=
E
_
)
(
Pterm_equiv
_
_
_
)
nil
tt
tt
)
;
simpler
.
Qed
.
src/Tactics.v
View file @
4a19cacf
...
@@ -72,7 +72,7 @@ Ltac simplHyp invOne :=
...
@@ -72,7 +72,7 @@ Ltac simplHyp invOne :=
Ltac
rewriteHyp
:=
Ltac
rewriteHyp
:=
match
goal
with
match
goal
with
|
[
H
:
_
|-
_
]
=>
rewrite
H
|
[
H
:
_
|-
_
]
=>
rewrite
H
;
auto
;
[
idtac
]
end
.
end
.
Ltac
rewriterP
:=
repeat
(
rewriteHyp
;
autorewrite
with
cpdt
in
*
)
.
Ltac
rewriterP
:=
repeat
(
rewriteHyp
;
autorewrite
with
cpdt
in
*
)
.
...
@@ -122,12 +122,17 @@ Ltac un_done :=
...
@@ -122,12 +122,17 @@ Ltac un_done :=
Ltac
crush
'
lemmas
invOne
:=
Ltac
crush
'
lemmas
invOne
:=
let
sintuition
:=
simpl
in
*;
intuition
;
try
subst
;
repeat
(
simplHyp
invOne
;
intuition
;
try
subst
)
;
try
congruence
let
sintuition
:=
simpl
in
*;
intuition
;
try
subst
;
repeat
(
simplHyp
invOne
;
intuition
;
try
subst
)
;
try
congruence
in
(
sintuition
;
rewriter
;
in
(
sintuition
;
match
lemmas
with
autorewrite
with
cpdt
in
*;
|
false
=>
idtac
repeat
(
match
goal
with
|
_
=>
repeat
((
app
ltac
:
(
fun
L
=>
inster
L
L
)
lemmas
||
appHyps
ltac
:
(
fun
L
=>
inster
L
L
))
;
|
[
H
:
_
|-
_
]
=>
(
rewrite
H
;
[])
repeat
(
simplHyp
invOne
;
intuition
))
;
un_done
||
(
rewrite
H
;
[
|
solve
[
crush
'
lemmas
invOne
]
])
end
;
sintuition
;
try
omega
;
try
(
elimtype
False
;
omega
))
.
end
;
autorewrite
with
cpdt
in
*
)
;
match
lemmas
with
|
false
=>
idtac
|
_
=>
repeat
((
app
ltac
:
(
fun
L
=>
inster
L
L
)
lemmas
||
appHyps
ltac
:
(
fun
L
=>
inster
L
L
))
;
repeat
(
simplHyp
invOne
;
intuition
))
;
un_done
end
;
sintuition
;
try
omega
;
try
(
elimtype
False
;
omega
))
.
Ltac
crush
:=
crush
'
false
fail
.
Ltac
crush
:=
crush
'
false
fail
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment