Commit 4a19cacf authored by Adam Chlipala's avatar Adam Chlipala

Closure conversion defined

parent 533e2737
......@@ -146,9 +146,12 @@ Module Concrete.
induction G1 as [ | [x'' t'] tl ]; crush; eauto;
match goal with
| [ H : _ |-v _ : _ |- _ ] => inversion H
end; crush; elimtype False; eauto;
end; crush; (elimtype False; eauto;
match goal with
| [ H : nil |-v _ : _ |- _ ] => inversion H
end)
|| match goal with
| [ H : _ |- _ ] => apply H; crush; eauto
end.
Qed.
......
......@@ -8,7 +8,7 @@
*)
(* begin hide *)
Require Import String List.
Require Import Arith Bool String List.
Require Import Axioms Tactics DepList.
......@@ -130,7 +130,7 @@ Module Source.
exp_equiv nil (E var1) (E var2).
End Source.
Section Closed.
Module Closed.
Inductive type : Type :=
| TNat : type
| Arrow : type -> type -> type
......@@ -181,6 +181,11 @@ Section Closed.
-> exp t1
| Snd : forall t1 t2,
exp (t1 ** t2)
-> exp t2
| Let : forall t1 t2,
exp t1
-> (var t1 -> exp t2)
-> exp t2.
Section funcs.
......@@ -211,7 +216,7 @@ Section Closed.
Notation "^ n" := (Const n) (at level 70) : cc_scope.
Infix "+^" := Plus (left associativity, at level 79) : cc_scope.
Infix "@@" := App (no associativity, at level 75) : cc_scope.
Infix "@" := App (left associativity, at level 77) : cc_scope.
Infix "##" := Pack (no associativity, at level 71) : cc_scope.
Notation "()" := EUnit : cc_scope.
......@@ -220,10 +225,13 @@ Section Closed.
Notation "#1 x" := (Fst x) (at level 72) : cc_scope.
Notation "#2 x" := (Snd x) (at level 72) : cc_scope.
Notation "f <= \\ x , y , e ; fs" :=
Notation "f <== \\ x , y , e ; fs" :=
(Abs (fun x y => e) (fun f => fs))
(right associativity, at level 80, e at next level) : cc_scope.
Notation "x <- e1 ; e2" := (Let e1 (fun x => e2))
(right associativity, at level 80, e1 at next level) : cc_scope.
Bind Scope cc_scope with exp funcs prog.
Fixpoint typeDenote (t : type) : Set :=
......@@ -250,6 +258,8 @@ Section Closed.
| Pair _ _ e1 e2 => (expDenote e1, expDenote e2)
| Fst _ _ e' => fst (expDenote e')
| Snd _ _ e' => snd (expDenote e')
| Let _ _ e1 e2 => expDenote (e2 (expDenote e1))
end.
Fixpoint funcsDenote T (fs : funcs typeDenote T) : T :=
......@@ -269,3 +279,874 @@ Section Closed.
Definition ProgDenote t (P : Prog t) := progDenote (P _).
End Closed.
Import Source Closed.
Section splice.
Open Local Scope cc_scope.
Fixpoint spliceFuncs var T1 (fs : funcs var T1)
T2 (f : T1 -> funcs var T2) {struct fs} : funcs var T2 :=
match fs with
| Main v => f v
| Abs _ _ _ e fs' => Abs e (fun x => spliceFuncs (fs' x) f)
end.
End splice.
Notation "x <-- e1 ; e2" := (spliceFuncs e1 (fun x => e2))
(right associativity, at level 80, e1 at next level) : cc_scope.
Definition natvar (_ : Source.type) := nat.
Definition isfree := hlist (fun (_ : Source.type) => bool).
Ltac maybe_destruct E :=
match goal with
| [ x : _ |- _ ] =>
match E with
| x => idtac
end
| _ =>
match E with
| eq_nat_dec _ _ => idtac
end
end; destruct E.
Ltac my_crush :=
crush; repeat (match goal with
| [ x : (_ * _)%type |- _ ] => destruct x
| [ |- context[if ?B then _ else _] ] => maybe_destruct B
| [ _ : context[if ?B then _ else _] |- _ ] => maybe_destruct B
end; crush).
Section isfree.
Import Source.
Open Local Scope source_scope.
Hint Extern 3 False => omega.
Fixpoint lookup_type (envT : list Source.type) (n : nat) {struct envT}
: isfree envT -> option Source.type :=
match envT return (isfree envT -> _) with
| nil => fun _ => None
| first :: rest => fun fvs =>
if eq_nat_dec n (length rest)
then match fvs with
| (true, _) => Some first
| (false, _) => None
end
else lookup_type rest n (snd fvs)
end.
Implicit Arguments lookup_type [envT].
Notation ok := (fun (envT : list Source.type) (fvs : isfree envT)
(n : nat) (t : Source.type)
=> lookup_type n fvs = Some t).
Fixpoint wfExp (envT : list Source.type) (fvs : isfree envT)
t (e : Source.exp natvar t) {struct e} : Prop :=
match e with
| Var t v => ok envT fvs v t
| Const _ => True
| Plus e1 e2 => wfExp envT fvs e1 /\ wfExp envT fvs e2
| App _ _ e1 e2 => wfExp envT fvs e1 /\ wfExp envT fvs e2
| Abs dom _ e' => wfExp (dom :: envT) (true ::: fvs) (e' (length envT))
end.
Implicit Arguments wfExp [envT t].
Theorem wfExp_weaken : forall t (e : exp natvar t) envT (fvs fvs' : isfree envT),
wfExp fvs e
-> (forall n t, ok _ fvs n t -> ok _ fvs' n t)
-> wfExp fvs' e.
Hint Extern 1 (lookup_type (envT := _ :: _) _ _ = Some _) =>
simpl in *; my_crush.
induction e; my_crush; eauto.
Defined.
Fixpoint isfree_none (envT : list Source.type) : isfree envT :=
match envT return (isfree envT) with
| nil => tt
| _ :: _ => (false, isfree_none _)
end.
Implicit Arguments isfree_none [envT].
Fixpoint isfree_one (envT : list Source.type) (n : nat) {struct envT} : isfree envT :=
match envT return (isfree envT) with
| nil => tt
| _ :: rest =>
if eq_nat_dec n (length rest)
then (true, isfree_none)
else (false, isfree_one _ n)
end.
Implicit Arguments isfree_one [envT].
Fixpoint isfree_merge (envT : list Source.type) : isfree envT -> isfree envT -> isfree envT :=
match envT return (isfree envT -> isfree envT -> isfree envT) with
| nil => fun _ _ => tt
| _ :: _ => fun fv1 fv2 => (fst fv1 || fst fv2, isfree_merge _ (snd fv1) (snd fv2))
end.
Implicit Arguments isfree_merge [envT].
Fixpoint fvsExp t (e : exp natvar t)
(envT : list Source.type) {struct e} : isfree envT :=
match e with
| Var _ n => isfree_one n
| Const _ => isfree_none
| Plus e1 e2 => isfree_merge (fvsExp e1 envT) (fvsExp e2 envT)
| App _ _ e1 e2 => isfree_merge (fvsExp e1 envT) (fvsExp e2 envT)
| Abs dom _ e' => snd (fvsExp (e' (length envT)) (dom :: envT))
end.
Lemma isfree_one_correct : forall t (v : natvar t) envT fvs,
ok envT fvs v t
-> ok envT (isfree_one (envT:=envT) v) v t.
induction envT; my_crush; eauto.
Defined.
Lemma isfree_merge_correct1 : forall t (v : natvar t) envT fvs1 fvs2,
ok envT fvs1 v t
-> ok envT (isfree_merge (envT:=envT) fvs1 fvs2) v t.
induction envT; my_crush; eauto.
Defined.
Hint Rewrite orb_true_r : cpdt.
Lemma isfree_merge_correct2 : forall t (v : natvar t) envT fvs1 fvs2,
ok envT fvs2 v t
-> ok envT (isfree_merge (envT:=envT) fvs1 fvs2) v t.
induction envT; my_crush; eauto.
Defined.
Hint Resolve isfree_one_correct isfree_merge_correct1 isfree_merge_correct2.
Lemma fvsExp_correct : forall t (e : exp natvar t)
envT (fvs : isfree envT), wfExp fvs e
-> forall (fvs' : isfree envT),
(forall v t, ok envT (fvsExp e envT) v t -> ok envT fvs' v t)
-> wfExp fvs' e.
Hint Extern 1 (_ = _) =>
match goal with
| [ H : lookup_type _ (fvsExp ?X ?Y) = _ |- _ ] =>
destruct (fvsExp X Y); my_crush
end.
induction e; my_crush; eauto.
Defined.
Lemma lookup_type_unique : forall v t1 t2 envT (fvs1 fvs2 : isfree envT),
lookup_type v fvs1 = Some t1
-> lookup_type v fvs2 = Some t2
-> t1 = t2.
induction envT; my_crush; eauto.
Defined.
Implicit Arguments lookup_type_unique [v t1 t2 envT fvs1 fvs2].
Hint Extern 2 (lookup_type _ _ = Some _) =>
match goal with
| [ H1 : lookup_type ?v _ = Some _,
H2 : lookup_type ?v _ = Some _ |- _ ] =>
(generalize (lookup_type_unique H1 H2); intro; subst)
|| rewrite <- (lookup_type_unique H1 H2)
end.
Lemma lookup_none : forall v t envT,
lookup_type (envT:=envT) v (isfree_none (envT:=envT)) = Some t
-> False.
induction envT; my_crush.
Defined.
Hint Extern 2 (_ = _) => elimtype False; eapply lookup_none; eassumption.
Lemma lookup_one : forall v' v t envT,
lookup_type (envT:=envT) v' (isfree_one (envT:=envT) v) = Some t
-> v' = v.
induction envT; my_crush.
Defined.
Implicit Arguments lookup_one [v' v t envT].
Hint Extern 2 (lookup_type _ _ = Some _) =>
match goal with
| [ H : lookup_type _ _ = Some _ |- _ ] =>
generalize (lookup_one H); intro; subst
end.
Lemma lookup_merge : forall v t envT (fvs1 fvs2 : isfree envT),
lookup_type v (isfree_merge fvs1 fvs2) = Some t
-> lookup_type v fvs1 = Some t
\/ lookup_type v fvs2 = Some t.
induction envT; my_crush.
Defined.
Implicit Arguments lookup_merge [v t envT fvs1 fvs2].
Lemma lookup_bound : forall v t envT (fvs : isfree envT),
lookup_type v fvs = Some t
-> v < length envT.
Hint Resolve lt_S.
induction envT; my_crush; eauto.
Defined.
Hint Resolve lookup_bound.
Lemma lookup_bound_contra : forall t envT (fvs : isfree envT),
lookup_type (length envT) fvs = Some t
-> False.
intros; assert (length envT < length envT); eauto.
Defined.
Hint Resolve lookup_bound_contra.
Hint Extern 3 (_ = _) => elimtype False; omega.
Lemma lookup_push_drop : forall v t t' envT fvs,
v < length envT
-> lookup_type (envT := t :: envT) v (true, fvs) = Some t'
-> lookup_type (envT := envT) v fvs = Some t'.
my_crush.
Defined.
Lemma lookup_push_add : forall v t t' envT fvs,
lookup_type (envT := envT) v (snd fvs) = Some t'
-> lookup_type (envT := t :: envT) v fvs = Some t'.
my_crush; elimtype False; eauto.
Defined.
Hint Resolve lookup_bound lookup_push_drop lookup_push_add.
Theorem fvsExp_minimal : forall t (e : exp natvar t)
envT (fvs : isfree envT), wfExp fvs e
-> (forall v t, ok envT (fvsExp e envT) v t -> ok envT fvs v t).
Hint Extern 1 (_ = _) =>
match goal with
| [ H : lookup_type _ (isfree_merge _ _) = Some _ |- _ ] =>
destruct (lookup_merge H); clear H; eauto
end.
induction e; my_crush; eauto.
Defined.
Fixpoint ccType (t : Source.type) : Closed.type :=
match t with
| Nat%source => Nat
| (dom --> ran)%source => ccType dom --> ccType ran
end%cc.
Open Local Scope cc_scope.
Fixpoint envType (envT : list Source.type) : isfree envT -> Closed.type :=
match envT return (isfree envT -> _) with
| nil => fun _ => Unit
| t :: _ => fun tup =>
if fst tup
then ccType t ** envType _ (snd tup)
else envType _ (snd tup)
end.
Implicit Arguments envType [envT].
Fixpoint envOf (var : Closed.type -> Set) (envT : list Source.type) {struct envT}
: isfree envT -> Set :=
match envT return (isfree envT -> _) with
| nil => fun _ => unit
| first :: rest => fun fvs =>
match fvs with
| (true, fvs') => (var (ccType first) * envOf var rest fvs')%type
| (false, fvs') => envOf var rest fvs'
end
end.
Implicit Arguments envOf [envT].
Notation "var <| to" := (match to with
| None => unit
| Some t => var (ccType t)
end) (no associativity, at level 70).
Fixpoint lookup (var : Closed.type -> Set) (envT : list Source.type) :
forall (n : nat) (fvs : isfree envT), envOf var fvs -> var <| lookup_type n fvs :=
match envT return (forall (n : nat) (fvs : isfree envT), envOf var fvs
-> var <| lookup_type n fvs) with
| nil => fun _ _ _ => tt
| first :: rest => fun n fvs =>
match (eq_nat_dec n (length rest)) as Heq return
(envOf var (envT := first :: rest) fvs
-> var <| (if Heq
then match fvs with
| (true, _) => Some first
| (false, _) => None
end
else lookup_type n (snd fvs))) with
| left _ =>
match fvs return (envOf var (envT := first :: rest) fvs
-> var <| (match fvs with
| (true, _) => Some first
| (false, _) => None
end)) with
| (true, _) => fun env => fst env
| (false, _) => fun _ => tt
end
| right _ =>
match fvs return (envOf var (envT := first :: rest) fvs
-> var <| (lookup_type n (snd fvs))) with
| (true, fvs') => fun env => lookup var rest n fvs' (snd env)
| (false, fvs') => fun env => lookup var rest n fvs' env
end
end
end.
Theorem lok : forall var n t envT (fvs : isfree envT),
lookup_type n fvs = Some t
-> var <| lookup_type n fvs = var (ccType t).
crush.
Defined.
End isfree.
Implicit Arguments lookup_type [envT].
Implicit Arguments lookup [envT fvs].
Implicit Arguments wfExp [t envT].
Implicit Arguments envType [envT].
Implicit Arguments envOf [envT].
Implicit Arguments lok [var n t envT fvs].
Section lookup_hints.
Hint Resolve lookup_bound_contra.
(*Ltac my_chooser T k :=
match T with
| ptype =>
match goal with
| [ H : lookup _ _ = Some ?t |- _ ] => k t
end
| _ => default_chooser T k
end.
Ltac my_matching := matching equation my_chooser.*)
Hint Resolve lookup_bound_contra.
Lemma lookup_type_push : forall t' envT (fvs1 fvs2 : isfree envT) b1 b2,
(forall (n : nat) (t : Source.type),
lookup_type (envT := t' :: envT) n (b1, fvs1) = Some t ->
lookup_type (envT := t' :: envT) n (b2, fvs2) = Some t)
-> (forall (n : nat) (t : Source.type),
lookup_type n fvs1 = Some t ->
lookup_type n fvs2 = Some t).
intros until b2; intro H; intros n t;
generalize (H n t); my_crush; elimtype False; eauto.
Defined.
Lemma lookup_type_push_contra : forall t' envT (fvs1 fvs2 : isfree envT),
(forall (n : nat) (t : Source.type),
lookup_type (envT := t' :: envT) n (true, fvs1) = Some t ->
lookup_type (envT := t' :: envT) n (false, fvs2) = Some t)
-> False.
intros until fvs2; intro H; generalize (H (length envT) t'); my_crush.
Defined.
End lookup_hints.
Section packing.
Open Local Scope cc_scope.
Hint Resolve lookup_type_push lookup_type_push_contra.
Definition packExp (var : Closed.type -> Set) (envT : list Source.type)
(fvs1 fvs2 : isfree envT)
: (forall n t, lookup_type n fvs1 = Some t -> lookup_type n fvs2 = Some t)
-> envOf var fvs2 -> exp var (envType fvs1).
refine (fix packExp (var : Closed.type -> Set) (envT : list Source.type) {struct envT}
: forall fvs1 fvs2 : isfree envT,
(forall n t, lookup_type n fvs1 = Some t -> lookup_type n fvs2 = Some t)
-> envOf var fvs2 -> exp var (envType fvs1) :=
match envT return (forall fvs1 fvs2 : isfree envT,
(forall n t, lookup_type n fvs1 = Some t -> lookup_type n fvs2 = Some t)
-> envOf var fvs2
-> exp var (envType fvs1)) with
| nil => fun _ _ _ _ => ()
| first :: rest => fun fvs1 =>
match fvs1 return (forall fvs2 : isfree (first :: rest),
(forall n t, lookup_type (envT := first :: rest) n fvs1 = Some t
-> lookup_type n fvs2 = Some t)
-> envOf var fvs2
-> exp var (envType (envT := first :: rest) fvs1)) with
| (false, fvs1') => fun fvs2 =>
match fvs2 return ((forall n t, lookup_type (envT := first :: rest) n (false, fvs1') = Some t
-> lookup_type (envT := first :: rest) n fvs2 = Some t)
-> envOf (envT := first :: rest) var fvs2
-> exp var (envType (envT := first :: rest) (false, fvs1'))) with
| (false, fvs2') => fun Hmin env =>
packExp var _ fvs1' fvs2' _ env
| (true, fvs2') => fun Hmin env =>
packExp var _ fvs1' fvs2' _ (snd env)
end
| (true, fvs1') => fun fvs2 =>
match fvs2 return ((forall n t, lookup_type (envT := first :: rest) n (true, fvs1') = Some t
-> lookup_type (envT := first :: rest) n fvs2 = Some t)
-> envOf (envT := first :: rest) var fvs2
-> exp var (envType (envT := first :: rest) (true, fvs1'))) with
| (false, fvs2') => fun Hmin env =>
False_rect _ _
| (true, fvs2') => fun Hmin env =>
[#(fst env), packExp var _ fvs1' fvs2' _ (snd env)]
end
end
end); eauto.
Defined.
Hint Resolve fvsExp_correct fvsExp_minimal.
Hint Resolve lookup_push_drop lookup_bound lookup_push_add.
Implicit Arguments packExp [var envT].
Fixpoint unpackExp (var : Closed.type -> Set) t (envT : list Source.type) {struct envT}
: forall fvs : isfree envT,
exp var (envType fvs)
-> (envOf var fvs -> exp var t) -> exp var t :=
match envT return (forall fvs : isfree envT,
exp var (envType fvs)
-> (envOf var fvs -> exp var t) -> exp var t) with
| nil => fun _ _ f => f tt
| first :: rest => fun fvs =>
match fvs return (exp var (envType (envT := first :: rest) fvs)
-> (envOf var (envT := first :: rest) fvs -> exp var t)
-> exp var t) with
| (false, fvs') => fun p f =>
unpackExp rest fvs' p f
| (true, fvs') => fun p f =>
x <- #1 p;
unpackExp rest fvs' (#2 p)
(fun env => f (x, env))
end
end.
Implicit Arguments unpackExp [var t envT fvs].
Theorem wfExp_lax : forall t t' envT (fvs : isfree envT) (e : Source.exp natvar t),
wfExp (envT := t' :: envT) (true, fvs) e
-> wfExp (envT := t' :: envT) (true, snd (fvsExp e (t' :: envT))) e.
Hint Extern 1 (_ = _) =>
match goal with
| [ H : lookup_type _ (fvsExp ?X ?Y) = _ |- _ ] =>
destruct (fvsExp X Y); my_crush
end.
eauto.
Defined.
Implicit Arguments wfExp_lax [t t' envT fvs e].
Lemma inclusion : forall t t' envT fvs (e : Source.exp natvar t),
wfExp (envT := t' :: envT) (true, fvs) e
-> (forall n t, lookup_type n (snd (fvsExp e (t' :: envT))) = Some t
-> lookup_type n fvs = Some t).
eauto.
Defined.
Implicit Arguments inclusion [t t' envT fvs e].
Definition env_prog var t envT (fvs : isfree envT) :=
funcs var (envOf var fvs -> Closed.exp var t).
Implicit Arguments env_prog [envT].
Axiom cheat : forall T, T.
Import Source.
Open Local Scope cc_scope.
Fixpoint ccExp var t (e : Source.exp natvar t)
(envT : list Source.type) (fvs : isfree envT)
{struct e} : wfExp fvs e -> env_prog var (ccType t) fvs :=
match e in (Source.exp _ t) return (wfExp fvs e -> env_prog var (ccType t) fvs) with
| Const n => fun _ => Main (fun _ => ^n)
| Plus e1 e2 => fun wf =>
n1 <-- ccExp var e1 _ fvs (proj1 wf);
n2 <-- ccExp var e2 _ fvs (proj2 wf);
Main (fun env => n1 env +^ n2 env)
| Var _ n => fun wf =>
Main (fun env => #(match lok wf in _ = T return T with
| refl_equal => lookup var n env
end))
| App _ _ f x => fun wf =>
f' <-- ccExp var f _ fvs (proj1 wf);
x' <-- ccExp var x _ fvs (proj2 wf);
Main (fun env => f' env @ x' env)
| Abs dom _ b => fun wf =>
b' <-- ccExp var (b (length envT)) (dom :: envT) _ (wfExp_lax wf);
f <== \\env, arg, unpackExp (#env) (fun env => b' (arg, env));
Main (fun env => #f ##
packExp
(snd (fvsExp (b (length envT)) (dom :: envT)))
fvs (inclusion wf) env)
end.
End packing.
Implicit Arguments packExp [var envT].
Implicit Arguments unpackExp [var t envT fvs].
Implicit Arguments ccExp [var t envT].
Fixpoint map_funcs var result T1 T2 (f : T1 -> T2) (fs : cfuncs var result T1) {struct fs}
: cfuncs var result T2 :=
match fs with
| CMain v => CMain (f v)
| CAbs _ _ e fs' => CAbs e (fun x => map_funcs f (fs' x))
end.
Definition CcTerm' result (E : Pterm result) (Hwf : wfTerm (envT := nil) tt (E _)) : Cprog result :=
fun _ => map_funcs (fun f => f tt) (ccTerm (E _) (envT := nil) tt Hwf).
(** * Correctness *)
Scheme pterm_equiv_mut := Minimality for pterm_equiv Sort Prop
with pprimop_equiv_mut := Minimality for pprimop_equiv Sort Prop.
Section splicePrim_correct.
Variables result t t' : ptype.
Variable ps' : ctypeDenote ([< t >]) -> cprimops ctypeDenote t'.
Theorem splicePrim_correct : forall (ps : cprimops ctypeDenote t),
cprimopsDenote (splicePrim ps ps')
= cprimopsDenote (ps' (cprimopsDenote ps)).
induction ps; equation.
Qed.
End splicePrim_correct.
Section spliceTerm_correct.
Variables result t : ptype.
Variable e : ctypeDenote ([< t >]) -> cterm ctypeDenote result.
Variable k : ptypeDenote result -> bool.
Theorem spliceTerm_correct : forall (ps : cprimops ctypeDenote t),
ctermDenote (spliceTerm ps e) k
= ctermDenote (e (cprimopsDenote ps)) k.
induction ps; equation.
Qed.
End spliceTerm_correct.
Section spliceFuncs'_correct.
Variable result : ptype.
Variables T1 T2 : Type.
Variable f : T1 -> T2.
Variable k : ptypeDenote result -> bool.
Theorem spliceFuncs'_correct : forall fs,
cfuncsDenote (spliceFuncs' fs f) k
= f (cfuncsDenote fs k).
induction fs; equation.
Qed.
End spliceFuncs'_correct.
Section spliceFuncs_correct.
Variable result : ptype.
Variables T1 T2 T3 : Type.
Variable fs2 : cfuncs ctypeDenote result T2.
Variable f : T1 -> T2 -> T3.
Variable k : ptypeDenote result -> bool.
Hint Rewrite spliceFuncs'_correct : ltamer.
Theorem spliceFuncs_correct : forall fs1,
cfuncsDenote (spliceFuncs fs1 fs2 f) k
= f (cfuncsDenote fs1 k) (cfuncsDenote fs2 k).
induction fs1; equation.
Qed.
End spliceFuncs_correct.
Section inside_correct.
Variable result : ptype.
Variables T1 T2 : Type.
Variable fs2 : T1 -> cfuncs ctypeDenote result T2.
Variable k : ptypeDenote result -> bool.
Theorem inside_correct : forall fs1,
cfuncsDenote (inside fs1 fs2) k
= cfuncsDenote (fs2 (cfuncsDenote fs1 k)) k.
induction fs1; equation.
Qed.
End inside_correct.
Notation "var <| to" := (match to with
| None => unit
| Some t => var ([< t >])%cc
end) (no associativity, at level 70).
Section packing_correct.
Variable result : ptype.
Hint Rewrite splicePrim_correct spliceTerm_correct : ltamer.
Ltac my_matching := matching my_equation default_chooser.
Fixpoint makeEnv (envT : list ptype) : forall (fvs : isfree envT),
ptypeDenote (envType fvs)
-> envOf ctypeDenote fvs :=
match envT return (forall (fvs : isfree envT),
ptypeDenote (envType fvs)
-> envOf ctypeDenote fvs) with
| nil => fun _ _ => tt
| first :: rest => fun fvs =>
match fvs return (ptypeDenote (envType (envT := first :: rest) fvs)
-> envOf (envT := first :: rest) ctypeDenote fvs) with
| (false, fvs') => fun env => makeEnv rest fvs' env
| (true, fvs') => fun env => (fst env, makeEnv rest fvs' (snd env))
end
end.
Theorem unpackExp_correct : forall (envT : list ptype) (fvs : isfree envT)
(ps : cprimops ctypeDenote (envType fvs))
(e : envOf ctypeDenote fvs -> cterm ctypeDenote result) k,
ctermDenote (unpackExp ps e) k
= ctermDenote (e (makeEnv _ _ (cprimopsDenote ps))) k.
induction envT; my_matching.
Qed.
Lemma lookup_type_more : forall v2 envT (fvs : isfree envT) t b v,
(v2 = length envT -> False)
-> lookup_type v2 (envT := t :: envT) (b, fvs) = v
-> lookup_type v2 fvs = v.
equation.
Qed.
Lemma lookup_type_less : forall v2 t envT (fvs : isfree (t :: envT)) v,
(v2 = length envT -> False)
-> lookup_type v2 (snd fvs) = v
-> lookup_type v2 (envT := t :: envT) fvs = v.
equation.
Qed.
Lemma lookup_bound_contra_eq : forall t envT (fvs : isfree envT) v,
lookup_type v fvs = Some t
-> v = length envT
-> False.
simpler; eapply lookup_bound_contra; eauto.
Defined.
Lemma lookup_type_inner : forall result t envT v t' (fvs : isfree envT) e,
wfTerm (envT := t :: envT) (true, fvs) e
-> lookup_type v (snd (fvsTerm (result := result) e (t :: envT))) = Some t'
-> lookup_type v fvs = Some t'.
Hint Resolve lookup_bound_contra_eq fvsTerm_minimal
lookup_type_more lookup_type_less.
Hint Extern 2 (Some _ = Some _) => contradictory.
eauto 6.
Qed.
Lemma cast_irrel : forall T1 T2 x (H1 H2 : T1 = T2),
(x :? H1) = (x :? H2).
equation.
Qed.
Hint Immediate cast_irrel.
Lemma cast_irrel_unit : forall T1 T2 x y (H1 : T1 = T2) (H2 : unit = T2),
(x :? H1) = (y :? H2).
intros; generalize H1;
rewrite <- H2 in H1;
equation.
Qed.
Hint Immediate cast_irrel_unit.
Hint Extern 3 (_ = _) =>
match goal with
| [ |- context[False_rect _ ?H] ] =>
apply False_rect; exact H
end.
Theorem packExp_correct : forall v2 t envT (fvs1 fvs2 : isfree envT)
Heq1 (Heq2 : ctypeDenote <| lookup_type v2 fvs2 = ptypeDenote t)
Hincl env,
(lookup ctypeDenote v2 env :? Heq2)
= (lookup ctypeDenote v2
(makeEnv envT fvs1
(cprimopsDenote
(packExp fvs1 fvs2 Hincl env))) :? Heq1).
induction envT; my_equation.
Qed.
End packing_correct.
Lemma look : forall envT n (fvs : isfree envT) t,
lookup_type n fvs = Some t
-> ctypeDenote <| lookup_type n fvs = ptypeDenote t.
equation.
Qed.
Implicit Arguments look [envT n fvs t].
Theorem ccTerm_correct : forall result G
(e1 : pterm ptypeDenote result)
(e2 : pterm natvar result),
pterm_equiv G e1 e2
-> forall (envT : list ptype) (fvs : isfree envT)
(env : envOf ctypeDenote fvs) (Hwf : wfTerm fvs e2) k,
(forall t (v1 : ptypeDenote t) (v2 : natvar t),
In (vars (x := t) (v1, v2)) G
-> v2 < length envT)
-> (forall t (v1 : ptypeDenote t) (v2 : natvar t),
In (vars (x := t) (v1, v2)) G
-> lookup_type v2 fvs = Some t
-> forall Heq, (lookup ctypeDenote v2 env :? Heq) = v1)
-> ptermDenote e1 k
= ctermDenote (cfuncsDenote (ccTerm e2 fvs Hwf) k env) k.
Hint Rewrite splicePrim_correct spliceTerm_correct
spliceFuncs_correct inside_correct : ltamer.
Hint Rewrite unpackExp_correct : ltamer.
Hint Resolve packExp_correct lookup_type_inner.
Hint Extern 1 (_ = _) => push_vars.
Hint Extern 1 (_ = _) =>
match goal with
| [ Hvars : forall t v1 v2, _,
Hin : In _ _ |- _ ] =>
rewrite (Hvars _ _ _ Hin)
end.
Hint Extern 1 (wfPrimop _ _) => tauto.
Hint Extern 1 (_ < _) =>
match goal with
| [ Hvars : forall t v1 v2, _,
Hin : In _ _ |- _ ] =>
exact (Hvars _ _ _ Hin)
end.
Hint Extern 1 (lookup_type _ _ = _) => tauto.
Hint Extern 1 (_ = _) =>
match goal with
| [ Hvars : forall t v1 v2, _,
Hin : In (vars (_, length ?envT)) _ |- _ ] =>
contradictory; assert (length envT < length envT); [auto | omega]
end.
Hint Extern 5 (_ = _) => symmetry.
Hint Extern 1 (_ = _) =>
match goal with
| [ H : lookup_type ?v _ = Some ?t, fvs : isfree _ |- (lookup _ _ _ :? _) = _ ] =>
let Hty := fresh "Hty" in
(assert (Hty : lookup_type v fvs = Some t);
[eauto
| eapply (trans_cast (look Hty))])
end.
Hint Extern 3 (ptermDenote _ _ = ctermDenote _ _) =>
match goal with
| [ H : _ |- ptermDenote (_ ?v1) _
= ctermDenote (cfuncsDenote (ccTerm (_ ?v2) (envT := ?envT) ?fvs _) _ _) _ ] =>
apply (H v1 v2 envT fvs); my_simpler
end.
intro.
apply (pterm_equiv_mut
(fun G (e1 : pterm ptypeDenote result) (e2 : pterm natvar result) =>
forall (envT : list ptype) (fvs : isfree envT)
(env : envOf ctypeDenote fvs) (Hwf : wfTerm fvs e2) k,
(forall t (v1 : ptypeDenote t) (v2 : natvar t),
In (vars (x := t) (v1, v2)) G
-> v2 < length envT)
-> (forall t (v1 : ptypeDenote t) (v2 : natvar t),
In (vars (x := t) (v1, v2)) G
-> lookup_type v2 fvs = Some t
-> forall Heq, (lookup ctypeDenote v2 env :? Heq) = v1)
-> ptermDenote e1 k
= ctermDenote (cfuncsDenote (ccTerm e2 fvs Hwf) k env) k)
(fun G t (p1 : pprimop ptypeDenote result t) (p2 : pprimop natvar result t) =>
forall (envT : list ptype) (fvs : isfree envT)
(env : envOf ctypeDenote fvs) (Hwf : wfPrimop fvs p2) Hwf k,
(forall t (v1 : ptypeDenote t) (v2 : natvar t),
In (vars (x := t) (v1, v2)) G
-> v2 < length envT)
-> (forall t (v1 : ptypeDenote t) (v2 : natvar t),
In (vars (x := t) (v1, v2)) G
-> lookup_type v2 fvs = Some t
-> forall Heq, (lookup ctypeDenote v2 env :? Heq) = v1)
-> pprimopDenote p1 k
= cprimopsDenote (cfuncsDenote (ccPrimop p2 fvs Hwf) k env)));
my_simpler; eauto.
Qed.
(** * Parametric version *)
Section wf.
Variable result : ptype.
Lemma Pterm_wf' : forall G (e1 e2 : pterm natvar result),
pterm_equiv G e1 e2
-> forall envT (fvs : isfree envT),
(forall t (v1 v2 : natvar t), In (vars (v1, v2)) G
-> lookup_type v1 fvs = Some t)
-> wfTerm fvs e1.
Hint Extern 3 (Some _ = Some _) => contradictory; eapply lookup_bound_contra; eauto.
apply (pterm_equiv_mut
(fun G (e1 e2 : pterm natvar result) =>
forall envT (fvs : isfree envT),
(forall t (v1 v2 : natvar t), In (vars (v1, v2)) G
-> lookup_type v1 fvs = Some t)
-> wfTerm (envT:=envT) fvs e1)
(fun G t (p1 p2 : pprimop natvar result t) =>
forall envT (fvs : isfree envT),
(forall t (v1 v2 : natvar t), In (vars (v1, v2)) G
-> lookup_type v1 fvs = Some t)
-> wfPrimop (envT:=envT) fvs p1));
simpler;
match goal with
| [ envT : list ptype, H : _ |- _ ] =>
apply (H (length envT) (length envT)); simpler
end.
Qed.
Theorem Pterm_wf : forall (E : Pterm result),
wfTerm (envT := nil) tt (E _).
intros; eapply Pterm_wf';
[apply Pterm_equiv
| simpler].
Qed.
End wf.
Definition CcTerm result (E : Pterm result) : Cprog result :=
CcTerm' E (Pterm_wf E).
Lemma map_funcs_correct : forall result T1 T2 (f : T1 -> T2) (fs : cfuncs ctypeDenote result T1) k,
cfuncsDenote (map_funcs f fs) k = f (cfuncsDenote fs k).
induction fs; equation.
Qed.
Theorem CcTerm_correct : forall result (E : Pterm result) k,
PtermDenote E k
= CprogDenote (CcTerm E) k.
Hint Rewrite map_funcs_correct : ltamer.
unfold PtermDenote, CprogDenote, CcTerm, CcTerm', cprogDenote;
simpler;
apply (ccTerm_correct (result := result)
(G := nil)
(e1 := E _)
(e2 := E _)
(Pterm_equiv _ _ _)
nil
tt
tt);
simpler.
Qed.
......@@ -72,7 +72,7 @@ Ltac simplHyp invOne :=
Ltac rewriteHyp :=
match goal with
| [ H : _ |- _ ] => rewrite H
| [ H : _ |- _ ] => rewrite H; auto; [idtac]
end.
Ltac rewriterP := repeat (rewriteHyp; autorewrite with cpdt in *).
......@@ -122,7 +122,12 @@ Ltac un_done :=
Ltac crush' lemmas invOne :=
let sintuition := simpl in *; intuition; try subst; repeat (simplHyp invOne; intuition; try subst); try congruence
in (sintuition; rewriter;
in (sintuition;
autorewrite with cpdt in *;
repeat (match goal with
| [ H : _ |- _ ] => (rewrite H; [])
|| (rewrite H; [ | solve [ crush' lemmas invOne ] ])
end; autorewrite with cpdt in *);
match lemmas with
| false => idtac
| _ => repeat ((app ltac:(fun L => inster L L) lemmas || appHyps ltac:(fun L => inster L L));
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment