Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Contribute to GitLab
Sign in
Toggle navigation
C
cpdt
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
research
cpdt
Commits
a983f1ed
Commit
a983f1ed
authored
Nov 04, 2008
by
Adam Chlipala
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Feeling stuck with Hoas
parent
9360a245
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
437 additions
and
30 deletions
+437
-30
DepList.v
src/DepList.v
+15
-0
Hoas.v
src/Hoas.v
+422
-30
No files found.
src/DepList.v
View file @
a983f1ed
...
@@ -142,3 +142,18 @@ Implicit Arguments hnext [A elm x ls].
...
@@ -142,3 +142,18 @@ Implicit Arguments hnext [A elm x ls].
Infix
":::"
:=
hcons
(
right
associativity
,
at
level
60
)
.
Infix
":::"
:=
hcons
(
right
associativity
,
at
level
60
)
.
Infix
"+++"
:=
happ
(
right
associativity
,
at
level
60
)
.
Infix
"+++"
:=
happ
(
right
associativity
,
at
level
60
)
.
Section
hmap
.
Variable
A
:
Type
.
Variables
B1
B2
:
A
->
Type
.
Variable
f
:
forall
x
,
B1
x
->
B2
x
.
Fixpoint
hmap
(
ls
:
list
A
)
:
hlist
B1
ls
->
hlist
B2
ls
:=
match
ls
return
hlist
B1
ls
->
hlist
B2
ls
with
|
nil
=>
fun
_
=>
hnil
|
_
::
_
=>
fun
hl
=>
f
(
fst
hl
)
:::
hmap
_
(
snd
hl
)
end
.
End
hmap
.
Implicit
Arguments
hmap
[
A
B1
B2
ls
]
.
src/Hoas.v
View file @
a983f1ed
...
@@ -140,42 +140,54 @@ Inductive Closed : forall t, Exp t -> Prop :=
...
@@ -140,42 +140,54 @@ Inductive Closed : forall t, Exp t -> Prop :=
Axiom
closed
:
forall
t
(
E
:
Exp
t
)
,
Closed
E
.
Axiom
closed
:
forall
t
(
E
:
Exp
t
)
,
Closed
E
.
Ltac
my_subst
:=
repeat
match
goal
with
|
[
x
:
type
|-
_
]
=>
subst
x
end
.
Ltac
my_crush
'
:=
Ltac
my_crush
'
:=
crush
;
crush
;
my_subst
;
repeat
(
match
goal
with
repeat
(
match
goal
with
|
[
H
:
_
|-
_
]
=>
generalize
(
inj_pairT2
_
_
_
_
_
H
)
;
clear
H
|
[
H
:
_
|-
_
]
=>
generalize
(
inj_pairT2
_
_
_
_
_
H
)
;
clear
H
end
;
crush
)
.
end
;
crush
;
my_subst
)
.
Ltac
equate_conj
F
G
:=
match
constr
:
(
F
,
G
)
with
|
(
_
?
x1
,
_
?
x2
)
=>
constr
:
(
x1
=
x2
)
|
(
_
?
x1
?
y1
,
_
?
x2
?
y2
)
=>
constr
:
(
x1
=
x2
/
\
y1
=
y2
)
|
(
_
?
x1
?
y1
?
z1
,
_
?
x2
?
y2
?
z2
)
=>
constr
:
(
x1
=
x2
/
\
y1
=
y2
/
\
z1
=
z2
)
|
(
_
?
x1
?
y1
?
z1
?
u1
,
_
?
x2
?
y2
?
z2
?
u2
)
=>
constr
:
(
x1
=
x2
/
\
y1
=
y2
/
\
z1
=
z2
/
\
u1
=
u2
)
|
(
_
?
x1
?
y1
?
z1
?
u1
?
v1
,
_
?
x2
?
y2
?
z2
?
u2
?
v2
)
=>
constr
:
(
x1
=
x2
/
\
y1
=
y2
/
\
z1
=
z2
/
\
u1
=
u2
/
\
v1
=
v2
)
end
.
Ltac
my_crush
:=
Ltac
my_crush
:=
my_crush
'
;
my_crush
'
;
try
(
match
goal
with
repeat
(
match
goal
with
|
[
H
:
?
F
=
?
G
|-
_
]
=>
|
[
H
:
?
F
=
?
G
|-
_
]
=>
match
goal
with
(
let
H
'
:=
fresh
"H'"
in
(
*|
[
_
:
F
(
fun
_
=>
unit
)
=
G
(
fun
_
=>
unit
)
|-
_
]
=>
fail
1
*
)
|
_
=>
let
H
'
:=
fresh
"H'"
in
assert
(
H
'
:
F
(
fun
_
=>
unit
)
=
G
(
fun
_
=>
unit
))
;
[
congruence
assert
(
H
'
:
F
(
fun
_
=>
unit
)
=
G
(
fun
_
=>
unit
))
;
[
congruence
|
discriminate
||
injection
H
'
]
;
|
discriminate
||
injection
H
'
;
clear
H
'
]
;
clear
H
'
my_crush
'
;
end
end
;
my_crush
'
)
;
repeat
match
goal
with
repeat
match
goal
with
|
[
H
:
?
F
=
?
G
,
H2
:
?
X
(
fun
_
=>
unit
)
=
?
Y
(
fun
_
=>
unit
)
|-
_
]
=>
|
[
H
:
context
[
fun
_
=>
unit
]
|-
_
]
=>
clear
H
match
X
with
end
;
|
Y
=>
fail
1
match
type
of
H
with
|
_
=>
|
?
F
=
?
G
=>
assert
(
X
=
Y
)
;
[
unfold
Exp
;
apply
ext_eq
;
intro
var
;
let
ec
:=
equate_conj
F
G
in
let
H
'
:=
fresh
"H'"
in
let
var
:=
fresh
"var"
in
assert
(
H
'
:
F
var
=
G
var
)
;
[
congruence
assert
ec
;
[
intuition
;
unfold
Exp
;
apply
ext_eq
;
intro
var
;
|
match
type
of
H
'
with
assert
(
H
'
:
F
var
=
G
var
)
;
try
congruence
;
match
type
of
H
'
with
|
?
X
=
?
Y
=>
|
?
X
=
?
Y
=>
let
X
:=
eval
hnf
in
X
in
let
X
:=
eval
hnf
in
X
in
let
Y
:=
eval
hnf
in
Y
in
let
Y
:=
eval
hnf
in
Y
in
change
(
X
=
Y
)
in
H
'
change
(
X
=
Y
)
in
H
'
end
;
injection
H
'
;
clear
H
'
;
my_crush
'
]
end
;
injection
H
'
;
my_crush
'
;
tauto
|
my_crush
'
;
clear
H2
]
|
intuition
;
subst
]
end
end
)
;
end
.
clear
H
end
;
my_crush
'
)
;
my_crush
'
.
Hint
Extern
1
(
_
=
_
@
_
)
=>
simpl
.
Hint
Extern
1
(
_
=
_
@
_
)
=>
simpl
.
...
@@ -342,6 +354,386 @@ Section cfold.
...
@@ -342,6 +354,386 @@ Section cfold.
End
cfold
.
End
cfold
.
Definition
Cfold
t
(
E
:
Exp
t
)
:
Exp
t
:=
fun
_
=>
cfold
(
E
_
)
.
Definition
Cfold
t
(
E
:
Exp
t
)
:
Exp
t
:=
fun
_
=>
cfold
(
E
_
)
.
Definition
Cfold1
t1
t2
(
E
:
Exp1
t1
t2
)
:
Exp1
t1
t2
:=
fun
_
x
=>
cfold
(
E
_
x
)
.
Lemma
fold_Cfold
:
forall
t
(
E
:
Exp
t
)
,
(
fun
_
=>
cfold
(
E
_
))
=
Cfold
E
.
reflexivity
.
Qed
.
Hint
Rewrite
fold_Cfold
:
fold
.
Lemma
fold_Cfold1
:
forall
t1
t2
(
E
:
Exp1
t1
t2
)
,
(
fun
_
x
=>
cfold
(
E
_
x
))
=
Cfold1
E
.
reflexivity
.
Qed
.
Lemma
fold_Subst_Cfold1
:
forall
t1
t2
(
E
:
Exp1
t1
t2
)
(
V
:
Exp
t1
)
,
(
fun
_
=>
flatten
(
cfold
(
E
_
(
V
_
))))
=
Subst
V
(
Cfold1
E
)
.
reflexivity
.
Qed
.
Axiom
cheat
:
forall
T
,
T
.
Lemma
fold_Const
:
forall
n
,
(
fun
_
=>
Const
'
n
)
=
Const
n
.
reflexivity
.
Qed
.
Lemma
fold_Plus
:
forall
(
E1
E2
:
Exp
_
)
,
(
fun
_
=>
Plus
'
(
E1
_
)
(
E2
_
))
=
Plus
E1
E2
.
reflexivity
.
Qed
.
Lemma
fold_App
:
forall
dom
ran
(
F
:
Exp
(
dom
-->
ran
))
(
X
:
Exp
dom
)
,
(
fun
_
=>
App
'
(
F
_
)
(
X
_
))
=
App
F
X
.
reflexivity
.
Qed
.
Lemma
fold_Abs
:
forall
dom
ran
(
B
:
Exp1
dom
ran
)
,
(
fun
_
=>
Abs
'
(
B
_
))
=
Abs
B
.
reflexivity
.
Qed
.
Hint
Rewrite
fold_Const
fold_Plus
fold_App
fold_Abs
:
fold
.
Lemma
fold_Subst
:
forall
t1
t2
(
E1
:
Exp1
t1
t2
)
(
V
:
Exp
t1
)
,
(
fun
_
=>
flatten
(
E1
_
(
V
_
)))
=
Subst
V
E1
.
reflexivity
.
Qed
.
Hint
Rewrite
fold_Subst
:
fold
.
Definition
ExpN
(
G
:
list
type
)
(
t
:
type
)
:=
forall
var
,
hlist
var
G
->
exp
var
t
.
Definition
ConstN
G
(
n
:
nat
)
:
ExpN
G
Nat
:=
fun
_
_
=>
Const
'
n
.
Definition
VarN
G
t
(
m
:
member
t
G
)
:
ExpN
G
t
:=
fun
_
s
=>
Var
(
hget
s
m
)
.
Definition
PlusN
G
(
E1
E2
:
ExpN
G
Nat
)
:
ExpN
G
Nat
:=
fun
_
s
=>
Plus
'
(
E1
_
s
)
(
E2
_
s
)
.
Definition
AppN
G
dom
ran
(
F
:
ExpN
G
(
dom
-->
ran
))
(
X
:
ExpN
G
dom
)
:
ExpN
G
ran
:=
fun
_
s
=>
App
'
(
F
_
s
)
(
X
_
s
)
.
Definition
AbsN
G
dom
ran
(
B
:
ExpN
(
dom
::
G
)
ran
)
:
ExpN
G
(
dom
-->
ran
)
:=
fun
_
s
=>
Abs
'
(
fun
x
=>
B
_
(
x
:::
s
))
.
Inductive
ClosedN
:
forall
G
t
,
ExpN
G
t
->
Prop
:=
|
CConstN
:
forall
G
b
,
ClosedN
(
ConstN
G
b
)
|
CPlusN
:
forall
G
(
E1
E2
:
ExpN
G
_
)
,
ClosedN
E1
->
ClosedN
E2
->
ClosedN
(
PlusN
E1
E2
)
|
CAppN
:
forall
G
dom
ran
(
E1
:
ExpN
G
(
dom
-->
ran
))
E2
,
ClosedN
E1
->
ClosedN
E2
->
ClosedN
(
AppN
E1
E2
)
|
CAbsN
:
forall
G
dom
ran
(
E1
:
ExpN
(
dom
::
G
)
ran
)
,
ClosedN
E1
->
ClosedN
(
AbsN
E1
)
.
Axiom
closedN
:
forall
G
t
(
E
:
ExpN
G
t
)
,
ClosedN
E
.
Hint
Resolve
closedN
.
Section
Closed1
.
Variable
xt
:
type
.
Definition
Const1
(
n
:
nat
)
:
Exp1
xt
Nat
:=
fun
_
_
=>
Const
'
n
.
Definition
Var1
:
Exp1
xt
xt
:=
fun
_
x
=>
Var
x
.
Definition
Plus1
(
E1
E2
:
Exp1
xt
Nat
)
:
Exp1
xt
Nat
:=
fun
_
s
=>
Plus
'
(
E1
_
s
)
(
E2
_
s
)
.
Definition
App1
dom
ran
(
F
:
Exp1
xt
(
dom
-->
ran
))
(
X
:
Exp1
xt
dom
)
:
Exp1
xt
ran
:=
fun
_
s
=>
App
'
(
F
_
s
)
(
X
_
s
)
.
Definition
Abs1
dom
ran
(
B
:
forall
var
,
var
dom
->
Exp1
xt
ran
)
:
Exp1
xt
(
dom
-->
ran
)
:=
fun
_
s
=>
Abs
'
(
fun
x
=>
B
_
x
_
s
)
.
Inductive
Closed1
:
forall
t
,
Exp1
xt
t
->
Prop
:=
|
CConst1
:
forall
b
,
Closed1
(
Const1
b
)
|
CPlus1
:
forall
E1
E2
,
Closed1
E1
->
Closed1
E2
->
Closed1
(
Plus1
E1
E2
)
|
CApp1
:
forall
dom
ran
(
E1
:
Exp1
_
(
dom
-->
ran
))
E2
,
Closed1
E1
->
Closed1
E2
->
Closed1
(
App1
E1
E2
)
|
CAbs1
:
forall
dom
ran
(
E1
:
forall
var
,
var
dom
->
Exp1
_
ran
)
,
Closed1
(
Abs1
E1
)
.
Axiom
closed1
:
forall
t
(
E
:
Exp1
xt
t
)
,
Closed1
E
.
End
Closed1
.
Hint
Resolve
closed1
.
Definition
CfoldN
G
t
(
E
:
ExpN
G
t
)
:
ExpN
G
t
:=
fun
_
s
=>
cfold
(
E
_
s
)
.
Theorem
fold_CfoldN
:
forall
G
t
(
E
:
ExpN
G
t
)
,
(
fun
_
s
=>
cfold
(
E
_
s
))
=
CfoldN
E
.
reflexivity
.
Qed
.
Definition
SubstN
t1
G
t2
(
E1
:
ExpN
G
t1
)
(
E2
:
ExpN
(
G
++
t1
::
nil
)
t2
)
:
ExpN
G
t2
:=
fun
_
s
=>
flatten
(
E2
_
(
hmap
(
@
Var
_
)
s
+++
E1
_
s
:::
hnil
))
.
Lemma
fold_SubstN
:
forall
t1
G
t2
(
E1
:
ExpN
G
t1
)
(
E2
:
ExpN
(
G
++
t1
::
nil
)
t2
)
,
(
fun
_
s
=>
flatten
(
E2
_
(
hmap
(
@
Var
_
)
s
+++
E1
_
s
:::
hnil
)))
=
SubstN
E1
E2
.
reflexivity
.
Qed
.
Hint
Rewrite
fold_CfoldN
fold_SubstN
:
fold
.
Ltac
ssimp
:=
unfold
Subst
,
Cfold
,
CfoldN
,
SubstN
in
*;
simpl
in
*;
autorewrite
with
fold
in
*;
repeat
match
goal
with
|
[
xt
:
type
|-
_
]
=>
rewrite
(
@
fold_Subst
xt
)
in
*
end
;
autorewrite
with
fold
in
*.
Ltac
uiper
:=
repeat
match
goal
with
|
[
H
:
_
=
_
|-
_
]
=>
generalize
H
;
subst
;
intro
H
;
rewrite
(
UIP_refl
_
_
H
)
end
.
Section
eq_arg
.
Variable
A
:
Type
.
Variable
B
:
A
->
Type
.
Variable
x
:
A
.
Variables
f
g
:
forall
x
,
B
x
.
Hypothesis
Heq
:
f
=
g
.
Theorem
eq_arg
:
f
x
=
g
x
.
congruence
.
Qed
.
End
eq_arg
.
Implicit
Arguments
eq_arg
[
A
B
f
g
]
.
(
*
Lemma
Cfold_Subst_comm
:
forall
G
t
(
E
:
ExpN
G
t
)
,
ClosedN
E
->
forall
t1
G
'
(
pf
:
G
=
G
'
++
t1
::
nil
)
V
,
CfoldN
(
SubstN
V
(
match
pf
in
_
=
G
return
ExpN
G
_
with
refl_equal
=>
E
end
))
=
SubstN
(
CfoldN
V
)
(
CfoldN
(
match
pf
in
_
=
G
return
ExpN
G
_
with
refl_equal
=>
E
end
))
.
induction
1
;
my_crush
;
uiper
;
ssimp
;
crush
;
unfold
ExpN
;
do
2
ext_eq
.
generalize
(
eq_arg
x0
(
eq_arg
x
(
IHClosedN1
_
_
(
refl_equal
_
)
V
)))
.
generalize
(
eq_arg
x0
(
eq_arg
x
(
IHClosedN2
_
_
(
refl_equal
_
)
V
)))
.
crush
.
match
goal
with
|
[
|-
_
=
flatten
(
match
?
E
with
|
Const
'
_
=>
_
|
Plus
'
_
_
=>
_
|
Var
_
_
=>
_
|
App
'
_
_
_
_
=>
_
|
Abs
'
_
_
_
=>
_
end
)
]
=>
dep_destruct
E
end
;
crush
.
match
goal
with
|
[
|-
_
=
flatten
(
match
?
E
with
|
Const
'
_
=>
_
|
Plus
'
_
_
=>
_
|
Var
_
_
=>
_
|
App
'
_
_
_
_
=>
_
|
Abs
'
_
_
_
=>
_
end
)
]
=>
dep_destruct
E
end
;
crush
.
match
goal
with
|
[
|-
match
?
E
with
|
Const
'
_
=>
_
|
Plus
'
_
_
=>
_
|
Var
_
_
=>
_
|
App
'
_
_
_
_
=>
_
|
Abs
'
_
_
_
=>
_
end
=
_
]
=>
dep_destruct
E
end
;
crush
.
rewrite
<-
H2
.
dep_destruct
e
.
intro
apply
cheat
.
unfold
ExpN
;
do
2
ext_eq
.
generalize
(
eq_arg
x0
(
eq_arg
x
(
IHClosedN1
_
_
(
refl_equal
_
)
V
)))
.
generalize
(
eq_arg
x0
(
eq_arg
x
(
IHClosedN2
_
_
(
refl_equal
_
)
V
)))
.
congruence
.
unfold
ExpN
;
do
2
ext_eq
.
f_equal
.
ext_eq
.
exact
(
eq_arg
(
x1
:::
x0
)
(
eq_arg
x
(
IHClosedN
_
(
dom
::
G
'
)
(
refl_equal
_
)
(
fun
_
s
=>
V
_
(
snd
s
)))))
.
Qed
.*
)
Lemma
Cfold_Subst
'
:
forall
t
(
E
V
'
:
Exp
t
)
,
E
===>
V
'
->
forall
G
xt
(
V
:
ExpN
G
xt
)
B
,
E
=
SubstN
V
B
->
ClosedN
B
->
Subst
(
Cfold
V
)
(
Cfold1
B
)
===>
Cfold
V
'
.
induction
1
;
inversion
2
;
my_crush
;
ssimp
.
auto
.
apply
cheat
.
my_crush
.
econstructor
.
instantiate
(
1
:=
Cfold1
B
)
.
unfold
Subst
,
Cfold1
in
*;
eauto
.
unfold
Subst
,
Cfold1
in
*;
eauto
.
unfold
Subst
,
Cfold
;
eauto
.
my_crush
;
ssimp
.
Lemma
Cfold_Subst
'
:
forall
t
(
B
:
Exp1
xt
t
)
,
Closed1
B
->
forall
V
'
,
Subst
V
B
===>
V
'
->
Subst
(
Cfold
V
)
(
Cfold1
B
)
===>
Cfold
V
'
.
induction
1
;
my_crush
;
ssimp
.
inversion
H
;
my_crush
.
apply
cheat
.
inversion
H1
;
my_crush
.
econstructor
.
instantiate
(
1
:=
Cfold1
B
)
.
eauto
.
change
(
Abs
(
Cfold1
B
))
with
(
Cfold
(
Abs
B
))
.
auto
.
eauto
.
eauto
.
apply
IHClosed1_1
.
eauto
.
match
goal
with
|
[
(
*
H
:
?
F
=
?
G
,*
)
H2
:
?
X
(
fun
_
=>
unit
)
=
?
Y
_
_
_
_
(
fun
_
=>
unit
)
|-
_
]
=>
idtac
(
*
match
X
with
|
Y
=>
fail
1
|
_
=>
idtac
(
*
assert
(
X
=
Y
)
;
[
unfold
Exp
;
apply
ext_eq
;
intro
var
;
let
H
'
:=
fresh
"H'"
in
assert
(
H
'
:
F
var
=
G
var
)
;
[
congruence
|
match
type
of
H
'
with
|
?
X
=
?
Y
=>
let
X
:=
eval
hnf
in
X
in
let
Y
:=
eval
hnf
in
Y
in
change
(
X
=
Y
)
in
H
'
end
;
injection
H
'
;
clear
H
'
;
my_crush
'
]
|
my_crush
'
;
clear
H2
]
*
)
end
*
)
end
.
clear
H5
H3
.
my_crush
.
unfold
Subst
in
*;
simpl
in
*;
autorewrite
with
fold
in
*.
Check
fold_Subst
.
repeat
rewrite
(
@
fold_Subst
t1
)
in
*.
simp
(
Subst
(
t2
:=
Nat
)
V
)
.
induction
1
;
my_crush
.
End
Exp1
.
Axiom
closed1
:
forall
t1
t2
(
E
:
Exp1
t1
t2
)
,
Closed1
E
.
Lemma
Cfold_Subst
'
:
forall
t1
(
V
:
Exp
t1
)
t2
(
B
:
Exp1
t1
t2
)
,
Closed1
B
->
forall
V
'
,
Subst
V
B
===>
V
'
->
Subst
(
Cfold
V
)
(
Cfold1
B
)
===>
Cfold
V
'
.
induction
1
;
my_crush
.
unfold
Subst
in
*;
simpl
in
*;
autorewrite
with
fold
in
*.
inversion
H
;
my_crush
.
unfold
Subst
in
*;
simpl
in
*;
autorewrite
with
fold
in
*.
Check
fold_Subst
.
repeat
rewrite
(
@
fold_Subst
t1
)
in
*.
simp
(
Subst
(
t2
:=
Nat
)
V
)
.
induction
1
;
my_crush
.
Theorem
Cfold_Subst
:
forall
t1
t2
(
V
:
Exp
t1
)
B
(
V
'
:
Exp
t2
)
,
Subst
V
B
===>
V
'
->
Subst
(
Cfold
V
)
(
Cfold1
B
)
===>
Cfold
V
'
.
Theorem
Cfold_correct
:
forall
t
(
E
V
:
Exp
t
)
,
E
===>
V
->
Cfold
E
===>
Cfold
V
.
induction
1
;
unfold
Cfold
in
*;
crush
;
simp
;
auto
.
simp
.
simp
.
apply
cheat
.
simp
.
econstructor
;
eauto
.
match
goal
with
|
[
|-
?
E
===>
?
V
]
=>
try
simp1
ltac
:
(
fun
E
'
=>
change
(
E
'
===>
V
))
;
try
match
goal
with
|
[
|-
?
E
'
===>
_
]
=>
simp1
ltac
:
(
fun
V
'
=>
change
(
E
'
===>
V
'
))
end
|
[
H
:
?
E
===>
?
V
|-
_
]
=>
try
simp1
ltac
:
(
fun
E
'
=>
change
(
E
'
===>
V
)
in
H
)
;
try
match
type
of
H
with
|
?
E
'
===>
_
=>
simp1
ltac
:
(
fun
V
'
=>
change
(
E
'
===>
V
'
)
in
H
)
end
end
.
simp
.
let
H
:=
IHBigStep1
in
match
type
of
H
with
|
?
E
===>
?
V
=>
try
simp1
ltac
:
(
fun
E
'
=>
change
(
E
'
===>
V
)
in
H
)
;
try
match
type
of
H
with
|
?
E
'
===>
_
=>
simp1
ltac
:
(
fun
V
'
=>
change
(
E
'
===>
V
'
)
in
H
)
end
end
.
try
simp1
ltac
:
(
fun
E
'
=>
change
(
E
'
===>
V
)
in
H
)
end
.
simp
.
try
simp1
ltac
:
(
fun
E
'
=>
change
(
fun
H
:
type
->
Type
=>
cfold
(
E1
H
))
with
E
'
in
IHBigStep1
)
.
try
simp1
ltac
:
(
fun
V
'
=>
change
(
fun
H
:
type
->
Type
=>
Abs
'
(
dom
:=
dom
)
(
fun
x
:
H
dom
=>
cfold
(
B
H
x
)))
with
V
'
in
IHBigStep1
)
.
simp1
ltac
:
(
fun
E
=>
change
((
fun
H
:
type
->
Type
=>
cfold
(
E1
H
))
===>
E
)
in
IHBigStep1
)
.
change
((
fun
H
:
type
->
Type
=>
cfold
(
E1
H
))
===>
Abs
(
fun
_
x
=>
cfold
(
B
_
x
)))
in
IHBigStep1
.
(
fun
H
:
type
->
Type
=>
Abs
'
(
dom
:=
dom
)
(
fun
x
:
H
dom
=>
cfold
(
B
H
x
)))
fold
Cfold
.
Definition
ExpN
(
G
:
list
type
)
(
t
:
type
)
:=
forall
var
,
hlist
var
G
->
exp
var
t
.
Definition
ExpN
(
G
:
list
type
)
(
t
:
type
)
:=
forall
var
,
hlist
var
G
->
exp
var
t
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment