Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Contribute to GitLab
Sign in
Toggle navigation
C
cpdt
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
research
cpdt
Commits
b21dadc2
Commit
b21dadc2
authored
Oct 07, 2008
by
Adam Chlipala
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add star to regexp matcher; need to automate a bit more
parent
723d8495
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
251 additions
and
4 deletions
+251
-4
MoreDep.v
src/MoreDep.v
+251
-4
No files found.
src/MoreDep.v
View file @
b21dadc2
...
@@ -349,13 +349,26 @@ Qed.
...
@@ -349,13 +349,26 @@ Qed.
Require
Import
Ascii
String
.
Require
Import
Ascii
String
.
Open
Scope
string_scope
.
Open
Scope
string_scope
.
Section
star
.
Variable
P
:
string
->
Prop
.
Inductive
star
:
string
->
Prop
:=
|
Empty
:
star
""
|
Iter
:
forall
s1
s2
,
P
s1
->
star
s2
->
star
(
s1
++
s2
)
.
End
star
.
Inductive
regexp
:
(
string
->
Prop
)
->
Type
:=
Inductive
regexp
:
(
string
->
Prop
)
->
Type
:=
|
Char
:
forall
ch
:
ascii
,
|
Char
:
forall
ch
:
ascii
,
regexp
(
fun
s
=>
s
=
String
ch
""
)
regexp
(
fun
s
=>
s
=
String
ch
""
)
|
Concat
:
forall
P1
P2
(
r1
:
regexp
P1
)
(
r2
:
regexp
P2
)
,
|
Concat
:
forall
P1
P2
(
r1
:
regexp
P1
)
(
r2
:
regexp
P2
)
,
regexp
(
fun
s
=>
exists
s1
,
exists
s2
,
s
=
s1
++
s2
/
\
P1
s1
/
\
P2
s2
)
regexp
(
fun
s
=>
exists
s1
,
exists
s2
,
s
=
s1
++
s2
/
\
P1
s1
/
\
P2
s2
)
|
Or
:
forall
P1
P2
(
r1
:
regexp
P1
)
(
r2
:
regexp
P2
)
,
|
Or
:
forall
P1
P2
(
r1
:
regexp
P1
)
(
r2
:
regexp
P2
)
,
regexp
(
fun
s
=>
P1
s
\
/
P2
s
)
.
regexp
(
fun
s
=>
P1
s
\
/
P2
s
)
|
Star
:
forall
P
(
r
:
regexp
P
)
,
regexp
(
star
P
)
.
Open
Scope
specif_scope
.
Open
Scope
specif_scope
.
...
@@ -416,12 +429,12 @@ Lemma substring_app_snd : forall s2 s1 n,
...
@@ -416,12 +429,12 @@ Lemma substring_app_snd : forall s2 s1 n,
induction
s1
;
crush
.
induction
s1
;
crush
.
Qed
.
Qed
.
Hint
Rewrite
substring_app_fst
substring_app_snd
using
assumption
:
cpdt
.
Hint
Rewrite
substring_app_fst
substring_app_snd
using
(
trivial
;
fail
)
:
cpdt
.
Section
split
.
Section
split
.
Variables
P1
P2
:
string
->
Prop
.
Variables
P1
P2
:
string
->
Prop
.
Variable
P1_dec
:
forall
s
,
{
P1
s
}
+
{~
P1
s
}.
Variable
P1_dec
:
forall
s
,
{
P1
s
}
+
{
~
P1
s
}.
Variable
P2_dec
:
forall
s
,
{
P2
s
}
+
{~
P2
s
}.
Variable
P2_dec
:
forall
s
,
{
P2
s
}
+
{
~
P2
s
}.
Variable
s
:
string
.
Variable
s
:
string
.
...
@@ -453,6 +466,231 @@ End split.
...
@@ -453,6 +466,231 @@ End split.
Implicit
Arguments
split
[
P1
P2
]
.
Implicit
Arguments
split
[
P1
P2
]
.
Lemma
app_empty_end
:
forall
s
,
s
++
""
=
s
.
induction
s
;
crush
.
Qed
.
Hint
Rewrite
app_empty_end
:
cpdt
.
Lemma
substring_self
:
forall
s
n
,
n
<=
0
->
substring
n
(
length
s
-
n
)
s
=
s
.
induction
s
;
substring
.
Qed
.
Lemma
substring_empty
:
forall
s
n
m
,
m
<=
0
->
substring
n
m
s
=
""
.
induction
s
;
substring
.
Qed
.
Hint
Rewrite
substring_self
substring_empty
using
omega
:
cpdt
.
Lemma
substring_split
'
:
forall
s
n
m
,
substring
n
m
s
++
substring
(
n
+
m
)
(
length
s
-
(
n
+
m
))
s
=
substring
n
(
length
s
-
n
)
s
.
Hint
Rewrite
substring_split
:
cpdt
.
induction
s
;
substring
.
Qed
.
Lemma
substring_stack
:
forall
s
n2
m1
m2
,
m1
<=
m2
->
substring
0
m1
(
substring
n2
m2
s
)
=
substring
n2
m1
s
.
induction
s
;
substring
.
Qed
.
Ltac
substring
'
:=
crush
;
repeat
match
goal
with
|
[
|-
context
[
match
?
N
with
O
=>
_
|
S
_
=>
_
end
]
]
=>
case_eq
N
;
crush
end
.
Lemma
substring_stack
'
:
forall
s
n1
n2
m1
m2
,
n1
+
m1
<=
m2
->
substring
n1
m1
(
substring
n2
m2
s
)
=
substring
(
n1
+
n2
)
m1
s
.
induction
s
;
substring
'
;
match
goal
with
|
[
|-
substring
?
N1
_
_
=
substring
?
N2
_
_
]
=>
replace
N1
with
N2
;
crush
end
.
Qed
.
Lemma
substring_suffix
:
forall
s
n
,
n
<=
length
s
->
length
(
substring
n
(
length
s
-
n
)
s
)
=
length
s
-
n
.
induction
s
;
substring
.
Qed
.
Lemma
substring_suffix_emp
'
:
forall
s
n
m
,
substring
n
(
S
m
)
s
=
""
->
n
>=
length
s
.
induction
s
;
crush
;
match
goal
with
|
[
|-
?
N
>=
_
]
=>
destruct
N
;
crush
end
;
match
goal
with
[
|-
S
?
N
>=
S
?
E
]
=>
assert
(
N
>=
E
)
;
[
eauto
|
omega
]
end
.
Qed
.
Lemma
substring_suffix_emp
:
forall
s
n
m
,
m
>
0
->
substring
n
m
s
=
""
->
n
>=
length
s
.
destruct
m
as
[
|
m
]
;
[
crush
|
intros
;
apply
substring_suffix_emp
'
with
m
;
assumption
]
.
Qed
.
Hint
Rewrite
substring_stack
substring_stack
'
substring_suffix
using
omega
:
cpdt
.
Lemma
minus_minus
:
forall
n
m1
m2
,
m1
+
m2
<=
n
->
n
-
m1
-
m2
=
n
-
(
m1
+
m2
)
.
intros
;
omega
.
Qed
.
Lemma
plus_n_Sm
'
:
forall
n
m
:
nat
,
S
(
n
+
m
)
=
m
+
S
n
.
intros
;
omega
.
Qed
.
Hint
Rewrite
minus_minus
using
omega
:
cpdt
.
Section
dec_star
.
Variable
P
:
string
->
Prop
.
Variable
P_dec
:
forall
s
,
{
P
s
}
+
{
~
P
s
}.
Hint
Constructors
star
.
Lemma
star_empty
:
forall
s
,
length
s
=
0
->
star
P
s
.
destruct
s
;
crush
.
Qed
.
Lemma
star_singleton
:
forall
s
,
P
s
->
star
P
s
.
intros
;
rewrite
<-
(
app_empty_end
s
)
;
auto
.
Qed
.
Lemma
star_app
:
forall
s
n
m
,
P
(
substring
n
m
s
)
->
star
P
(
substring
(
n
+
m
)
(
length
s
-
(
n
+
m
))
s
)
->
star
P
(
substring
n
(
length
s
-
n
)
s
)
.
induction
n
;
substring
;
match
goal
with
|
[
H
:
P
(
substring
?
N
?
M
?
S
)
|-
_
]
=>
solve
[
rewrite
<-
(
substring_split
S
M
)
;
auto
|
rewrite
<-
(
substring_split
'
S
N
M
)
;
auto
]
end
.
Qed
.
Hint
Resolve
star_empty
star_singleton
star_app
.
Variable
s
:
string
.
Lemma
star_inv
:
forall
s
,
star
P
s
->
s
=
""
\
/
exists
i
,
i
<
length
s
/
\
P
(
substring
0
(
S
i
)
s
)
/
\
star
P
(
substring
(
S
i
)
(
length
s
-
S
i
)
s
)
.
Hint
Extern
1
(
exists
i
:
nat
,
_
)
=>
match
goal
with
|
[
H
:
P
(
String
_
?
S
)
|-
_
]
=>
exists
(
length
S
)
;
crush
end
.
induction
1
;
[
crush
|
match
goal
with
|
[
_
:
P
?
S
|-
_
]
=>
destruct
S
;
crush
end
]
.
Qed
.
Lemma
star_substring_inv
:
forall
n
,
n
<=
length
s
->
star
P
(
substring
n
(
length
s
-
n
)
s
)
->
substring
n
(
length
s
-
n
)
s
=
""
\
/
exists
l
,
l
<
length
s
-
n
/
\
P
(
substring
n
(
S
l
)
s
)
/
\
star
P
(
substring
(
n
+
S
l
)
(
length
s
-
(
n
+
S
l
))
s
)
.
Hint
Rewrite
plus_n_Sm
'
:
cpdt
.
intros
;
match
goal
with
|
[
H
:
star
_
_
|-
_
]
=>
generalize
(
star_inv
H
)
;
do
3
crush
;
eauto
end
.
Qed
.
Section
dec_star
''
.
Variable
n
:
nat
.
Variable
P
'
:
string
->
Prop
.
Variable
P
'_
dec
:
forall
n
'
:
nat
,
n
'
>
n
->
{
P
'
(
substring
n
'
(
length
s
-
n
'
)
s
)
}
+
{
~
P
'
(
substring
n
'
(
length
s
-
n
'
)
s
)
}.
Definition
dec_star
''
(
l
:
nat
)
:
{
exists
l
'
,
S
l
'
<=
l
/
\
P
(
substring
n
(
S
l
'
)
s
)
/
\
P
'
(
substring
(
n
+
S
l
'
)
(
length
s
-
(
n
+
S
l
'
))
s
)
}
+
{
forall
l
'
,
S
l
'
<=
l
->
~
P
(
substring
n
(
S
l
'
)
s
)
\
/
~
P
'
(
substring
(
n
+
S
l
'
)
(
length
s
-
(
n
+
S
l
'
))
s
)
}.
refine
(
fix
F
(
l
:
nat
)
:
{
exists
l
'
,
S
l
'
<=
l
/
\
P
(
substring
n
(
S
l
'
)
s
)
/
\
P
'
(
substring
(
n
+
S
l
'
)
(
length
s
-
(
n
+
S
l
'
))
s
)
}
+
{
forall
l
'
,
S
l
'
<=
l
->
~
P
(
substring
n
(
S
l
'
)
s
)
\
/
~
P
'
(
substring
(
n
+
S
l
'
)
(
length
s
-
(
n
+
S
l
'
))
s
)
}
:=
match
l
return
{
exists
l
'
,
S
l
'
<=
l
/
\
P
(
substring
n
(
S
l
'
)
s
)
/
\
P
'
(
substring
(
n
+
S
l
'
)
(
length
s
-
(
n
+
S
l
'
))
s
)
}
+
{
forall
l
'
,
S
l
'
<=
l
->
~
P
(
substring
n
(
S
l
'
)
s
)
\
/
~
P
'
(
substring
(
n
+
S
l
'
)
(
length
s
-
(
n
+
S
l
'
))
s
)
}
with
|
O
=>
_
|
S
l
'
=>
(
P_dec
(
substring
n
(
S
l
'
)
s
)
&&
P
'_
dec
(
n
'
:=
n
+
S
l
'
)
_
)
||
F
l
'
end
)
;
clear
F
;
crush
;
eauto
7
;
match
goal
with
|
[
H
:
?
X
<=
S
?
Y
|-
_
]
=>
destruct
(
eq_nat_dec
X
(
S
Y
))
;
crush
end
.
Defined
.
End
dec_star
''
.
Definition
dec_star
'
(
n
n
'
:
nat
)
:
length
s
-
n
'
<=
n
->
{
star
P
(
substring
n
'
(
length
s
-
n
'
)
s
)
}
+
{~
star
P
(
substring
n
'
(
length
s
-
n
'
)
s
)
}.
About
dec_star
''
.
refine
(
fix
F
(
n
n
'
:
nat
)
{
struct
n
}
:
length
s
-
n
'
<=
n
->
{
star
P
(
substring
n
'
(
length
s
-
n
'
)
s
)
}
+
{~
star
P
(
substring
n
'
(
length
s
-
n
'
)
s
)
}
:=
match
n
return
length
s
-
n
'
<=
n
->
{
star
P
(
substring
n
'
(
length
s
-
n
'
)
s
)
}
+
{~
star
P
(
substring
n
'
(
length
s
-
n
'
)
s
)
}
with
|
O
=>
fun
_
=>
Yes
|
S
n
''
=>
fun
_
=>
le_gt_dec
(
length
s
)
n
'
||
dec_star
''
(
n
:=
n
'
)
(
star
P
)
(
fun
n0
_
=>
Reduce
(
F
n
''
n0
_
))
(
length
s
-
n
'
)
end
)
;
clear
F
;
crush
;
eauto
.
apply
star_substring_inv
in
H
;
crush
;
eauto
.
assert
(
n
'
>=
length
s
)
;
[
|
omega
]
.
apply
substring_suffix_emp
with
(
length
s
-
n
'
)
;
crush
.
assert
(
S
x
<=
length
s
-
n
'
)
;
[
omega
|
]
.
apply
_1
in
H1
.
tauto
.
Defined
.
Definition
dec_star
:
{
star
P
s
}
+
{
~
star
P
s
}.
refine
(
match
s
with
|
""
=>
Reduce
(
dec_star
'
(
n
:=
length
s
)
0
_
)
|
_
=>
Reduce
(
dec_star
'
(
n
:=
length
s
)
0
_
)
end
)
;
crush
.
Defined
.
End
dec_star
.
Lemma
app_cong
:
forall
x1
y1
x2
y2
,
Lemma
app_cong
:
forall
x1
y1
x2
y2
,
x1
=
x2
x1
=
x2
->
y1
=
y2
->
y1
=
y2
...
@@ -462,12 +700,15 @@ Qed.
...
@@ -462,12 +700,15 @@ Qed.
Hint
Resolve
app_cong
.
Hint
Resolve
app_cong
.
Definition
matches
P
(
r
:
regexp
P
)
s
:
{
P
s
}
+
{
~
P
s
}.
Definition
matches
P
(
r
:
regexp
P
)
s
:
{
P
s
}
+
{
~
P
s
}.
refine
(
fix
F
P
(
r
:
regexp
P
)
s
:
{
P
s
}
+
{
~
P
s
}
:=
refine
(
fix
F
P
(
r
:
regexp
P
)
s
:
{
P
s
}
+
{
~
P
s
}
:=
match
r
with
match
r
with
|
Char
ch
=>
string_dec
s
(
String
ch
""
)
|
Char
ch
=>
string_dec
s
(
String
ch
""
)
|
Concat
_
_
r1
r2
=>
Reduce
(
split
(
F
_
r1
)
(
F
_
r2
)
s
)
|
Concat
_
_
r1
r2
=>
Reduce
(
split
(
F
_
r1
)
(
F
_
r2
)
s
)
|
Or
_
_
r1
r2
=>
F
_
r1
s
||
F
_
r2
s
|
Or
_
_
r1
r2
=>
F
_
r1
s
||
F
_
r2
s
|
Star
_
r
=>
dec_star
_
_
_
end
)
;
crush
;
end
)
;
crush
;
match
goal
with
match
goal
with
|
[
H
:
_
|-
_
]
=>
generalize
(
H
_
_
(
refl_equal
_
))
|
[
H
:
_
|-
_
]
=>
generalize
(
H
_
_
(
refl_equal
_
))
...
@@ -484,3 +725,9 @@ Eval simpl in matches a_b "".
...
@@ -484,3 +725,9 @@ Eval simpl in matches a_b "".
Eval
simpl
in
matches
a_b
"a"
.
Eval
simpl
in
matches
a_b
"a"
.
Eval
simpl
in
matches
a_b
"aa"
.
Eval
simpl
in
matches
a_b
"aa"
.
Eval
simpl
in
matches
a_b
"b"
.
Eval
simpl
in
matches
a_b
"b"
.
Example
a_star
:=
Star
(
Char
"a"
%
char
)
.
Eval
simpl
in
matches
a_star
""
.
Eval
simpl
in
matches
a_star
"a"
.
Eval
simpl
in
matches
a_star
"b"
.
Eval
simpl
in
matches
a_star
"aa"
.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment