Commit b21dadc2 authored by Adam Chlipala's avatar Adam Chlipala

Add star to regexp matcher; need to automate a bit more

parent 723d8495
...@@ -349,13 +349,26 @@ Qed. ...@@ -349,13 +349,26 @@ Qed.
Require Import Ascii String. Require Import Ascii String.
Open Scope string_scope. Open Scope string_scope.
Section star.
Variable P : string -> Prop.
Inductive star : string -> Prop :=
| Empty : star ""
| Iter : forall s1 s2,
P s1
-> star s2
-> star (s1 ++ s2).
End star.
Inductive regexp : (string -> Prop) -> Type := Inductive regexp : (string -> Prop) -> Type :=
| Char : forall ch : ascii, | Char : forall ch : ascii,
regexp (fun s => s = String ch "") regexp (fun s => s = String ch "")
| Concat : forall P1 P2 (r1 : regexp P1) (r2 : regexp P2), | Concat : forall P1 P2 (r1 : regexp P1) (r2 : regexp P2),
regexp (fun s => exists s1, exists s2, s = s1 ++ s2 /\ P1 s1 /\ P2 s2) regexp (fun s => exists s1, exists s2, s = s1 ++ s2 /\ P1 s1 /\ P2 s2)
| Or : forall P1 P2 (r1 : regexp P1) (r2 : regexp P2), | Or : forall P1 P2 (r1 : regexp P1) (r2 : regexp P2),
regexp (fun s => P1 s \/ P2 s). regexp (fun s => P1 s \/ P2 s)
| Star : forall P (r : regexp P),
regexp (star P).
Open Scope specif_scope. Open Scope specif_scope.
...@@ -416,12 +429,12 @@ Lemma substring_app_snd : forall s2 s1 n, ...@@ -416,12 +429,12 @@ Lemma substring_app_snd : forall s2 s1 n,
induction s1; crush. induction s1; crush.
Qed. Qed.
Hint Rewrite substring_app_fst substring_app_snd using assumption : cpdt. Hint Rewrite substring_app_fst substring_app_snd using (trivial; fail) : cpdt.
Section split. Section split.
Variables P1 P2 : string -> Prop. Variables P1 P2 : string -> Prop.
Variable P1_dec : forall s, {P1 s} + {~P1 s}. Variable P1_dec : forall s, {P1 s} + { ~P1 s}.
Variable P2_dec : forall s, {P2 s} + {~P2 s}. Variable P2_dec : forall s, {P2 s} + { ~P2 s}.
Variable s : string. Variable s : string.
...@@ -453,6 +466,231 @@ End split. ...@@ -453,6 +466,231 @@ End split.
Implicit Arguments split [P1 P2]. Implicit Arguments split [P1 P2].
Lemma app_empty_end : forall s, s ++ "" = s.
induction s; crush.
Qed.
Hint Rewrite app_empty_end : cpdt.
Lemma substring_self : forall s n,
n <= 0
-> substring n (length s - n) s = s.
induction s; substring.
Qed.
Lemma substring_empty : forall s n m,
m <= 0
-> substring n m s = "".
induction s; substring.
Qed.
Hint Rewrite substring_self substring_empty using omega : cpdt.
Lemma substring_split' : forall s n m,
substring n m s ++ substring (n + m) (length s - (n + m)) s
= substring n (length s - n) s.
Hint Rewrite substring_split : cpdt.
induction s; substring.
Qed.
Lemma substring_stack : forall s n2 m1 m2,
m1 <= m2
-> substring 0 m1 (substring n2 m2 s)
= substring n2 m1 s.
induction s; substring.
Qed.
Ltac substring' :=
crush;
repeat match goal with
| [ |- context[match ?N with O => _ | S _ => _ end] ] => case_eq N; crush
end.
Lemma substring_stack' : forall s n1 n2 m1 m2,
n1 + m1 <= m2
-> substring n1 m1 (substring n2 m2 s)
= substring (n1 + n2) m1 s.
induction s; substring';
match goal with
| [ |- substring ?N1 _ _ = substring ?N2 _ _ ] =>
replace N1 with N2; crush
end.
Qed.
Lemma substring_suffix : forall s n,
n <= length s
-> length (substring n (length s - n) s) = length s - n.
induction s; substring.
Qed.
Lemma substring_suffix_emp' : forall s n m,
substring n (S m) s = ""
-> n >= length s.
induction s; crush;
match goal with
| [ |- ?N >= _ ] => destruct N; crush
end;
match goal with
[ |- S ?N >= S ?E ] => assert (N >= E); [ eauto | omega ]
end.
Qed.
Lemma substring_suffix_emp : forall s n m,
m > 0
-> substring n m s = ""
-> n >= length s.
destruct m as [| m]; [crush | intros; apply substring_suffix_emp' with m; assumption].
Qed.
Hint Rewrite substring_stack substring_stack' substring_suffix
using omega : cpdt.
Lemma minus_minus : forall n m1 m2,
m1 + m2 <= n
-> n - m1 - m2 = n - (m1 + m2).
intros; omega.
Qed.
Lemma plus_n_Sm' : forall n m : nat, S (n + m) = m + S n.
intros; omega.
Qed.
Hint Rewrite minus_minus using omega : cpdt.
Section dec_star.
Variable P : string -> Prop.
Variable P_dec : forall s, {P s} + { ~P s}.
Hint Constructors star.
Lemma star_empty : forall s,
length s = 0
-> star P s.
destruct s; crush.
Qed.
Lemma star_singleton : forall s, P s -> star P s.
intros; rewrite <- (app_empty_end s); auto.
Qed.
Lemma star_app : forall s n m,
P (substring n m s)
-> star P (substring (n + m) (length s - (n + m)) s)
-> star P (substring n (length s - n) s).
induction n; substring;
match goal with
| [ H : P (substring ?N ?M ?S) |- _ ] =>
solve [ rewrite <- (substring_split S M); auto
| rewrite <- (substring_split' S N M); auto ]
end.
Qed.
Hint Resolve star_empty star_singleton star_app.
Variable s : string.
Lemma star_inv : forall s,
star P s
-> s = ""
\/ exists i, i < length s
/\ P (substring 0 (S i) s)
/\ star P (substring (S i) (length s - S i) s).
Hint Extern 1 (exists i : nat, _) =>
match goal with
| [ H : P (String _ ?S) |- _ ] => exists (length S); crush
end.
induction 1; [
crush
| match goal with
| [ _ : P ?S |- _ ] => destruct S; crush
end
].
Qed.
Lemma star_substring_inv : forall n,
n <= length s
-> star P (substring n (length s - n) s)
-> substring n (length s - n) s = ""
\/ exists l, l < length s - n
/\ P (substring n (S l) s)
/\ star P (substring (n + S l) (length s - (n + S l)) s).
Hint Rewrite plus_n_Sm' : cpdt.
intros;
match goal with
| [ H : star _ _ |- _ ] => generalize (star_inv H); do 3 crush; eauto
end.
Qed.
Section dec_star''.
Variable n : nat.
Variable P' : string -> Prop.
Variable P'_dec : forall n' : nat, n' > n
-> {P' (substring n' (length s - n') s)}
+ { ~P' (substring n' (length s - n') s)}.
Definition dec_star'' (l : nat)
: {exists l', S l' <= l
/\ P (substring n (S l') s) /\ P' (substring (n + S l') (length s - (n + S l')) s)}
+ {forall l', S l' <= l
-> ~P (substring n (S l') s) \/ ~P' (substring (n + S l') (length s - (n + S l')) s)}.
refine (fix F (l : nat) : {exists l', S l' <= l
/\ P (substring n (S l') s) /\ P' (substring (n + S l') (length s - (n + S l')) s)}
+ {forall l', S l' <= l
-> ~P (substring n (S l') s) \/ ~P' (substring (n + S l') (length s - (n + S l')) s)} :=
match l return {exists l', S l' <= l
/\ P (substring n (S l') s) /\ P' (substring (n + S l') (length s - (n + S l')) s)}
+ {forall l', S l' <= l ->
~P (substring n (S l') s) \/ ~P' (substring (n + S l') (length s - (n + S l')) s)} with
| O => _
| S l' =>
(P_dec (substring n (S l') s) && P'_dec (n' := n + S l') _)
|| F l'
end); clear F; crush; eauto 7;
match goal with
| [ H : ?X <= S ?Y |- _ ] => destruct (eq_nat_dec X (S Y)); crush
end.
Defined.
End dec_star''.
Definition dec_star' (n n' : nat) : length s - n' <= n
-> {star P (substring n' (length s - n') s)}
+ {~star P (substring n' (length s - n') s)}.
About dec_star''.
refine (fix F (n n' : nat) {struct n} : length s - n' <= n
-> {star P (substring n' (length s - n') s)}
+ {~star P (substring n' (length s - n') s)} :=
match n return length s - n' <= n
-> {star P (substring n' (length s - n') s)}
+ {~star P (substring n' (length s - n') s)} with
| O => fun _ => Yes
| S n'' => fun _ =>
le_gt_dec (length s) n'
|| dec_star'' (n := n') (star P) (fun n0 _ => Reduce (F n'' n0 _)) (length s - n')
end); clear F; crush; eauto.
apply star_substring_inv in H; crush; eauto.
assert (n' >= length s); [ | omega].
apply substring_suffix_emp with (length s - n'); crush.
assert (S x <= length s - n'); [ omega | ].
apply _1 in H1.
tauto.
Defined.
Definition dec_star : {star P s} + { ~star P s}.
refine (match s with
| "" => Reduce (dec_star' (n := length s) 0 _)
| _ => Reduce (dec_star' (n := length s) 0 _)
end); crush.
Defined.
End dec_star.
Lemma app_cong : forall x1 y1 x2 y2, Lemma app_cong : forall x1 y1 x2 y2,
x1 = x2 x1 = x2
-> y1 = y2 -> y1 = y2
...@@ -462,12 +700,15 @@ Qed. ...@@ -462,12 +700,15 @@ Qed.
Hint Resolve app_cong. Hint Resolve app_cong.
Definition matches P (r : regexp P) s : {P s} + { ~P s}. Definition matches P (r : regexp P) s : {P s} + { ~P s}.
refine (fix F P (r : regexp P) s : {P s} + { ~P s} := refine (fix F P (r : regexp P) s : {P s} + { ~P s} :=
match r with match r with
| Char ch => string_dec s (String ch "") | Char ch => string_dec s (String ch "")
| Concat _ _ r1 r2 => Reduce (split (F _ r1) (F _ r2) s) | Concat _ _ r1 r2 => Reduce (split (F _ r1) (F _ r2) s)
| Or _ _ r1 r2 => F _ r1 s || F _ r2 s | Or _ _ r1 r2 => F _ r1 s || F _ r2 s
| Star _ r => dec_star _ _ _
end); crush; end); crush;
match goal with match goal with
| [ H : _ |- _ ] => generalize (H _ _ (refl_equal _)) | [ H : _ |- _ ] => generalize (H _ _ (refl_equal _))
...@@ -484,3 +725,9 @@ Eval simpl in matches a_b "". ...@@ -484,3 +725,9 @@ Eval simpl in matches a_b "".
Eval simpl in matches a_b "a". Eval simpl in matches a_b "a".
Eval simpl in matches a_b "aa". Eval simpl in matches a_b "aa".
Eval simpl in matches a_b "b". Eval simpl in matches a_b "b".
Example a_star := Star (Char "a"%char).
Eval simpl in matches a_star "".
Eval simpl in matches a_star "a".
Eval simpl in matches a_star "b".
Eval simpl in matches a_star "aa".
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment