Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Contribute to GitLab
Sign in
Toggle navigation
C
cpdt
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
research
cpdt
Commits
d603fecb
Commit
d603fecb
authored
Nov 02, 2008
by
Adam Chlipala
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Removed G2 everywhere
parent
a555abd7
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
54 additions
and
59 deletions
+54
-59
Firstorder.v
src/Firstorder.v
+54
-59
No files found.
src/Firstorder.v
View file @
d603fecb
...
...
@@ -113,10 +113,9 @@ Module Concrete.
induction
G
'
as
[
|
[
x
'
t
'
]
tl
]
;
crush
;
eauto
9.
Qed
.
Lemma
weaken_lookup
:
forall
G2
x
t
G
'
,
G
'
#
G2
->
forall
G1
,
G1
++
G2
|-
v
x
:
t
->
G1
++
G
'
++
G2
|-
v
x
:
t
.
Lemma
weaken_lookup
:
forall
x
t
G
'
G1
,
G1
|-
v
x
:
t
->
G1
++
G
'
|-
v
x
:
t
.
Hint
Resolve
weaken_lookup
'
.
induction
G1
as
[
|
[
x
'
t
'
]
tl
]
;
crush
;
...
...
@@ -127,27 +126,16 @@ Module Concrete.
Hint
Resolve
weaken_lookup
.
Lemma
hasType_push
:
forall
x
t
G1
G2
e
t
'
,
((
x
,
t
)
::
G1
)
++
G2
|-
e
e
:
t
'
->
(
x
,
t
)
::
G1
++
G2
|-
e
e
:
t
'
.
trivial
.
Qed
.
Hint
Resolve
hasType_push
.
Theorem
weaken_hasType
'
:
forall
G
'
G
e
t
,
G
|-
e
e
:
t
->
forall
G1
G2
,
G
=
G1
++
G2
->
G
'
#
G2
->
G1
++
G
'
++
G2
|-
e
e
:
t
.
->
G
++
G
'
|-
e
e
:
t
.
induction
1
;
crush
;
eauto
.
Qed
.
Theorem
weaken_hasType
:
forall
G
e
t
,
G
|-
e
e
:
t
->
forall
G
'
,
G
'
#
G
->
G
'
++
G
|-
e
e
:
t
.
intros
;
change
(
G
'
++
G
)
with
(
nil
++
G
'
++
G
)
;
Theorem
weaken_hasType
:
forall
e
t
,
nil
|-
e
e
:
t
->
forall
G
'
,
G
'
|-
e
e
:
t
.
intros
;
change
G
'
with
(
nil
++
G
'
)
;
eapply
weaken_hasType
'
;
eauto
.
Qed
.
...
...
@@ -157,15 +145,11 @@ Module Concrete.
intros
;
rewrite
(
app_nil_end
G
)
;
apply
weaken_hasType
;
auto
.
Qed
.
Theorem
weaken_hasType1
:
forall
G
e
t
,
G
|-
e
e
:
t
->
forall
x
t
'
,
x
##
G
->
(
x
,
t
'
)
::
G
|-
e
e
:
t
.
intros
;
change
((
x
,
t
'
)
::
G
)
with
(((
x
,
t
'
)
::
nil
)
++
G
)
;
apply
weaken_hasType
;
crush
;
match
goal
with
|
[
H
:
(
_
,
_
)
=
(
_
,
_
)
|-
_
]
=>
injection
H
end
;
crush
;
eauto
.
Theorem
weaken_hasType1
:
forall
e
t
,
nil
|-
e
e
:
t
->
forall
x
t
'
,
(
x
,
t
'
)
::
nil
|-
e
e
:
t
.
intros
;
change
((
x
,
t
'
)
::
nil
)
with
(((
x
,
t
'
)
::
nil
)
++
nil
)
;
apply
weaken_hasType
;
crush
.
Qed
.
Hint
Resolve
weaken_hasType_closed
weaken_hasType1
.
...
...
@@ -198,10 +182,10 @@ Module Concrete.
inversion
2
;
crush
;
elimtype
False
;
eauto
.
Qed
.
Lemma
subst_lookup
:
forall
x
'
t
G2
,
Lemma
subst_lookup
:
forall
x
'
t
,
x
<>
x
'
->
forall
G1
,
G1
++
(
x
,
xt
)
::
G2
|-
v
x
'
:
t
->
G1
++
G2
|-
v
x
'
:
t
.
->
forall
G1
,
G1
++
(
x
,
xt
)
::
nil
|-
v
x
'
:
t
->
G1
|-
v
x
'
:
t
.
induction
G1
as
[
|
[
x
''
t
'
]
tl
]
;
crush
;
match
goal
with
|
[
H
:
_
|-
v
_
:
_
|-
_
]
=>
inversion
H
...
...
@@ -210,20 +194,22 @@ Module Concrete.
Hint
Resolve
subst_lookup
.
Lemma
subst_lookup
''
:
forall
G2
x
'
t
,
x
'
##
G2
->
forall
G1
,
x
'
##
G1
->
G1
++
(
x
,
xt
)
::
G2
|-
v
x
'
:
t
Lemma
subst_lookup
''
:
forall
x
'
t
G1
,
x
'
##
G1
->
G1
++
(
x
,
xt
)
::
nil
|-
v
x
'
:
t
->
t
=
xt
.
Hint
Resolve
subst_lookup
'
.
induction
G1
as
[
|
[
x
''
t
'
]
tl
]
;
crush
;
eauto
;
match
goal
with
|
[
H
:
_
|-
v
_
:
_
|-
_
]
=>
inversion
H
end
;
crush
;
elimtype
False
;
eauto
.
end
;
crush
;
elimtype
False
;
eauto
;
match
goal
with
|
[
H
:
nil
|-
v
_
:
_
|-
_
]
=>
inversion
H
end
.
Qed
.
Implicit
Arguments
subst_lookup
''
[
G2
x
'
t
G1
]
.
Implicit
Arguments
subst_lookup
''
[
x
'
t
G1
]
.
Lemma
disjoint_cons
:
forall
x
x
'
t
(
G
:
ctx
)
,
x
##
G
...
...
@@ -237,10 +223,10 @@ Module Concrete.
Hint
Resolve
disjoint_cons
.
Lemma
shadow_lookup
:
forall
G2
v
t
t
'
G1
,
Lemma
shadow_lookup
:
forall
v
t
t
'
G1
,
G1
|-
v
x
:
t
'
->
G1
++
(
x
,
xt
)
::
G2
|-
v
v
:
t
->
G1
++
G2
|-
v
v
:
t
.
->
G1
++
(
x
,
xt
)
::
nil
|-
v
v
:
t
->
G1
|-
v
v
:
t
.
induction
G1
as
[
|
[
x
''
t
''
]
tl
]
;
crush
;
match
goal
with
|
[
H
:
nil
|-
v
_
:
_
|-
_
]
=>
inversion
H
...
...
@@ -249,11 +235,11 @@ Module Concrete.
end
.
Qed
.
Lemma
shadow_hasType
'
:
forall
G
2
G
e
t
,
Lemma
shadow_hasType
'
:
forall
G
e
t
,
G
|-
e
e
:
t
->
forall
G1
,
G
=
G1
++
(
x
,
xt
)
::
G2
->
forall
G1
,
G
=
G1
++
(
x
,
xt
)
::
nil
->
forall
t
''
,
G1
|-
v
x
:
t
''
->
G1
++
G2
|-
e
e
:
t
.
->
G1
|-
e
e
:
t
.
Hint
Resolve
shadow_lookup
.
induction
1
;
crush
;
eauto
;
...
...
@@ -263,10 +249,10 @@ Module Concrete.
end
.
Qed
.
Lemma
shadow_hasType
:
forall
G1
G2
e
t
t
''
,
G1
++
(
x
,
xt
)
::
G2
|-
e
e
:
t
Lemma
shadow_hasType
:
forall
G1
e
t
t
''
,
G1
++
(
x
,
xt
)
::
nil
|-
e
e
:
t
->
G1
|-
v
x
:
t
''
->
G1
++
G2
|-
e
e
:
t
.
->
G1
|-
e
e
:
t
.
intros
;
eapply
shadow_hasType
'
;
eauto
.
Qed
.
...
...
@@ -274,25 +260,23 @@ Module Concrete.
Theorem
subst_hasType
:
forall
G
e2
t
,
G
|-
e
e2
:
t
->
forall
G1
G2
,
G
=
G1
++
(
x
,
xt
)
::
G2
->
forall
G1
,
G
=
G1
++
(
x
,
xt
)
::
nil
->
x
##
G1
->
x
##
G2
->
G1
++
G2
|-
e
subst
e2
:
t
.
->
G1
|-
e
subst
e2
:
t
.
induction
1
;
crush
;
try
match
goal
with
|
[
|-
context
[
if
?
E
then
_
else
_
]
]
=>
destruct
E
end
;
crush
;
eauto
6
;
match
goal
with
|
[
H1
:
x
##
_
,
H2
:
x
##
_
,
H3
:
_
|-
v
x
:
_
|-
_
]
=>
rewrite
(
subst_lookup
''
H
2
H1
H3
)
|
[
H1
:
x
##
_
,
H2
:
_
|-
v
x
:
_
|-
_
]
=>
rewrite
(
subst_lookup
''
H
1
H2
)
end
;
crush
.
Qed
.
Theorem
subst_hasType_closed
:
forall
e2
t
,
(
x
,
xt
)
::
nil
|-
e
e2
:
t
->
nil
|-
e
subst
e2
:
t
.
intros
;
change
(
nil
++
nil
|-
e
subst
e2
:
t
)
;
eapply
subst_hasType
;
eauto
.
intros
;
eapply
subst_hasType
;
eauto
.
Qed
.
End
subst
.
...
...
@@ -323,7 +307,7 @@ Module Concrete.
Hint
Constructors
step
.
Theorem
progress
:
forall
G
e
t
,
G
|-
e
e
:
t
Lemma
progress
'
:
forall
G
e
t
,
G
|-
e
e
:
t
->
G
=
nil
->
val
e
\
/
exists
e
'
,
e
==>
e
'
.
induction
1
;
crush
;
eauto
;
...
...
@@ -335,14 +319,25 @@ Module Concrete.
end
.
Qed
.
Theorem
preservation
:
forall
G
e
t
,
G
|-
e
e
:
t
Theorem
progress
:
forall
e
t
,
nil
|-
e
e
:
t
->
val
e
\
/
exists
e
'
,
e
==>
e
'
.
intros
;
eapply
progress
'
;
eauto
.
Qed
.
Lemma
preservation
'
:
forall
G
e
t
,
G
|-
e
e
:
t
->
G
=
nil
->
forall
e
'
,
e
==>
e
'
->
G
|-
e
e
'
:
t
.
->
nil
|-
e
e
'
:
t
.
induction
1
;
inversion
2
;
crush
;
eauto
;
match
goal
with
|
[
H
:
_
|-
e
Abs
_
_
:
_
|-
_
]
=>
inversion
H
end
;
eauto
.
Qed
.
Theorem
preservation
:
forall
e
t
,
nil
|-
e
e
:
t
->
forall
e
'
,
e
==>
e
'
->
nil
|-
e
e
'
:
t
.
intros
;
eapply
preservation
'
;
eauto
.
Qed
.
End
Concrete
.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment