Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Contribute to GitLab
Sign in
Toggle navigation
C
cpdt
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
research
cpdt
Commits
0df7c729
Commit
0df7c729
authored
Nov 02, 2008
by
Adam Chlipala
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Proved concrete substitution
parent
981d4d5b
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
303 additions
and
1 deletion
+303
-1
Makefile
Makefile
+1
-1
Firstorder.v
src/Firstorder.v
+299
-0
Intro.v
src/Intro.v
+2
-0
toc.html
src/toc.html
+1
-0
No files found.
Makefile
View file @
0df7c729
MODULES_NODOC
:=
Axioms Tactics MoreSpecif DepList
MODULES_NODOC
:=
Axioms Tactics MoreSpecif DepList
MODULES_PROSE
:=
Intro
MODULES_PROSE
:=
Intro
MODULES_CODE
:=
StackMachine InductiveTypes Predicates Coinductive Subset
\
MODULES_CODE
:=
StackMachine InductiveTypes Predicates Coinductive Subset
\
MoreDep DataStruct Equality Match Reflection
MoreDep DataStruct Equality Match Reflection
Firstorder
MODULES_DOC
:=
$(MODULES_PROSE)
$(MODULES_CODE)
MODULES_DOC
:=
$(MODULES_PROSE)
$(MODULES_CODE)
MODULES
:=
$(MODULES_NODOC)
$(MODULES_DOC)
MODULES
:=
$(MODULES_NODOC)
$(MODULES_DOC)
VS
:=
$
(
MODULES:%
=
src/%.v
)
VS
:=
$
(
MODULES:%
=
src/%.v
)
...
...
src/Firstorder.v
0 → 100644
View file @
0df7c729
(
*
Copyright
(
c
)
2008
,
Adam
Chlipala
*
*
This
work
is
licensed
under
a
*
Creative
Commons
Attribution
-
Noncommercial
-
No
Derivative
Works
3.0
*
Unported
License
.
*
The
license
text
is
available
at
:
*
http
:
//creativecommons.org/licenses/by-nc-nd/3.0/
*
)
(
*
begin
hide
*
)
Require
Import
List
String
.
Require
Import
Tactics
.
Set
Implicit
Arguments
.
(
*
end
hide
*
)
(
**
%
\
section
{
Formalizing
Programming
Languages
and
Compilers
}
\
chapter
{
First
-
Order
Variable
Representations
}%
*
)
(
**
TODO
:
Prose
for
this
chapter
*
)
(
**
*
Concrete
Binding
*
)
Module
Concrete
.
Definition
var
:=
string
.
Definition
var_eq
:=
string_dec
.
Inductive
exp
:
Set
:=
|
Const
:
bool
->
exp
|
Var
:
var
->
exp
|
App
:
exp
->
exp
->
exp
|
Abs
:
var
->
exp
->
exp
.
Inductive
type
:
Set
:=
|
Bool
:
type
|
Arrow
:
type
->
type
->
type
.
Infix
"-->"
:=
Arrow
(
right
associativity
,
at
level
60
)
.
Definition
ctx
:=
list
(
var
*
type
)
.
Reserved
Notation
"G |-v x : t"
(
no
associativity
,
at
level
90
,
x
at
next
level
)
.
Inductive
lookup
:
ctx
->
var
->
type
->
Prop
:=
|
First
:
forall
x
t
G
,
(
x
,
t
)
::
G
|-
v
x
:
t
|
Next
:
forall
x
t
x
'
t
'
G
,
x
<>
x
'
->
G
|-
v
x
:
t
->
(
x
'
,
t
'
)
::
G
|-
v
x
:
t
where
"G |-v x : t"
:=
(
lookup
G
x
t
)
.
Hint
Constructors
lookup
.
Reserved
Notation
"G |-e e : t"
(
no
associativity
,
at
level
90
,
e
at
next
level
)
.
Inductive
hasType
:
ctx
->
exp
->
type
->
Prop
:=
|
TConst
:
forall
G
b
,
G
|-
e
Const
b
:
Bool
|
TVar
:
forall
G
v
t
,
G
|-
v
v
:
t
->
G
|-
e
Var
v
:
t
|
TApp
:
forall
G
e1
e2
dom
ran
,
G
|-
e
e1
:
dom
-->
ran
->
G
|-
e
e2
:
dom
->
G
|-
e
App
e1
e2
:
ran
|
TAbs
:
forall
G
x
e
'
dom
ran
,
(
x
,
dom
)
::
G
|-
e
e
'
:
ran
->
G
|-
e
Abs
x
e
'
:
dom
-->
ran
where
"G |-e e : t"
:=
(
hasType
G
e
t
)
.
Hint
Constructors
hasType
.
Notation
"x ## G"
:=
(
forall
t
'
:
type
,
In
(
x
,
t
'
)
G
->
False
)
(
no
associativity
,
at
level
90
)
.
Notation
"G' # G"
:=
(
forall
(
x
:
var
)
(
t
:
type
)
,
In
(
x
,
t
)
G
->
x
##
G
'
)
(
no
associativity
,
at
level
90
)
.
Lemma
lookup_In
:
forall
G
x
t
,
G
|-
v
x
:
t
->
In
(
x
,
t
)
G
.
induction
1
;
crush
.
Qed
.
Hint
Resolve
lookup_In
.
Lemma
disjoint_invert1
:
forall
G
x
t
G
'
x
'
t
'
,
G
|-
v
x
:
t
->
(
x
'
,
t
'
)
::
G
'
#
G
->
x
<>
x
'
.
crush
;
eauto
.
Qed
.
Lemma
disjoint_invert2
:
forall
G
'
G
p
,
p
::
G
'
#
G
->
G
'
#
G
.
firstorder
.
Qed
.
Hint
Resolve
disjoint_invert1
disjoint_invert2
.
Hint
Extern
1
(
_
<>
_
)
=>
(
intro
;
subst
)
.
Lemma
weaken_lookup
'
:
forall
G
x
t
,
G
|-
v
x
:
t
->
forall
G
'
,
G
'
#
G
->
G
'
++
G
|-
v
x
:
t
.
induction
G
'
as
[
|
[
x
'
t
'
]
tl
]
;
crush
;
eauto
9.
Qed
.
Lemma
weaken_lookup
:
forall
G2
x
t
G
'
,
G
'
#
G2
->
forall
G1
,
G1
++
G2
|-
v
x
:
t
->
G1
++
G
'
++
G2
|-
v
x
:
t
.
Hint
Resolve
weaken_lookup
'
.
induction
G1
as
[
|
[
x
'
t
'
]
tl
]
;
crush
;
match
goal
with
|
[
H
:
_
|-
v
_
:
_
|-
_
]
=>
inversion
H
;
crush
end
.
Qed
.
Hint
Resolve
weaken_lookup
.
Lemma
hasType_push
:
forall
x
t
G1
G2
e
t
'
,
((
x
,
t
)
::
G1
)
++
G2
|-
e
e
:
t
'
->
(
x
,
t
)
::
G1
++
G2
|-
e
e
:
t
'
.
trivial
.
Qed
.
Hint
Resolve
hasType_push
.
Theorem
weaken_hasType
'
:
forall
G
'
G
e
t
,
G
|-
e
e
:
t
->
forall
G1
G2
,
G
=
G1
++
G2
->
G
'
#
G2
->
G1
++
G
'
++
G2
|-
e
e
:
t
.
induction
1
;
crush
;
eauto
.
Qed
.
Theorem
weaken_hasType
:
forall
G
e
t
,
G
|-
e
e
:
t
->
forall
G
'
,
G
'
#
G
->
G
'
++
G
|-
e
e
:
t
.
intros
;
change
(
G
'
++
G
)
with
(
nil
++
G
'
++
G
)
;
eapply
weaken_hasType
'
;
eauto
.
Qed
.
Theorem
weaken_hasType_closed
:
forall
e
t
,
nil
|-
e
e
:
t
->
forall
G
,
G
|-
e
e
:
t
.
intros
;
rewrite
(
app_nil_end
G
)
;
apply
weaken_hasType
;
auto
.
Qed
.
Theorem
weaken_hasType1
:
forall
G
e
t
,
G
|-
e
e
:
t
->
forall
x
t
'
,
x
##
G
->
(
x
,
t
'
)
::
G
|-
e
e
:
t
.
intros
;
change
((
x
,
t
'
)
::
G
)
with
(((
x
,
t
'
)
::
nil
)
++
G
)
;
apply
weaken_hasType
;
crush
;
match
goal
with
|
[
H
:
(
_
,
_
)
=
(
_
,
_
)
|-
_
]
=>
injection
H
end
;
crush
;
eauto
.
Qed
.
Hint
Resolve
weaken_hasType_closed
weaken_hasType1
.
Section
subst
.
Variable
x
:
var
.
Variable
e1
:
exp
.
Fixpoint
subst
(
e2
:
exp
)
:
exp
:=
match
e2
with
|
Const
b
=>
Const
b
|
Var
x
'
=>
if
var_eq
x
'
x
then
e1
else
Var
x
'
|
App
e1
e2
=>
App
(
subst
e1
)
(
subst
e2
)
|
Abs
x
'
e
'
=>
Abs
x
'
(
if
var_eq
x
'
x
then
e
'
else
subst
e
'
)
end
.
Variable
xt
:
type
.
Hypothesis
Ht
'
:
nil
|-
e
e1
:
xt
.
Lemma
subst_lookup
'
:
forall
G2
x
'
t
,
x
'
##
G2
->
(
x
,
xt
)
::
G2
|-
v
x
'
:
t
->
t
=
xt
.
inversion
2
;
crush
;
elimtype
False
;
eauto
.
Qed
.
Lemma
subst_lookup
:
forall
x
'
t
G2
,
x
<>
x
'
->
forall
G1
,
G1
++
(
x
,
xt
)
::
G2
|-
v
x
'
:
t
->
G1
++
G2
|-
v
x
'
:
t
.
induction
G1
as
[
|
[
x
''
t
'
]
tl
]
;
crush
;
match
goal
with
|
[
H
:
_
|-
v
_
:
_
|-
_
]
=>
inversion
H
end
;
crush
.
Qed
.
Hint
Resolve
subst_lookup
.
Lemma
subst_lookup
''
:
forall
G2
x
'
t
,
x
'
##
G2
->
forall
G1
,
x
'
##
G1
->
G1
++
(
x
,
xt
)
::
G2
|-
v
x
'
:
t
->
t
=
xt
.
Hint
Resolve
subst_lookup
'
.
induction
G1
as
[
|
[
x
''
t
'
]
tl
]
;
crush
;
eauto
;
match
goal
with
|
[
H
:
_
|-
v
_
:
_
|-
_
]
=>
inversion
H
end
;
crush
;
elimtype
False
;
eauto
.
Qed
.
Implicit
Arguments
subst_lookup
''
[
G2
x
'
t
G1
]
.
Lemma
disjoint_cons
:
forall
x
x
'
t
(
G
:
ctx
)
,
x
##
G
->
x
'
<>
x
->
x
##
(
x
'
,
t
)
::
G
.
firstorder
;
match
goal
with
|
[
H
:
(
_
,
_
)
=
(
_
,
_
)
|-
_
]
=>
injection
H
end
;
crush
.
Qed
.
Hint
Resolve
disjoint_cons
.
Lemma
shadow_lookup
:
forall
G2
v
t
t
'
G1
,
G1
|-
v
x
:
t
'
->
G1
++
(
x
,
xt
)
::
G2
|-
v
v
:
t
->
G1
++
G2
|-
v
v
:
t
.
induction
G1
as
[
|
[
x
''
t
''
]
tl
]
;
crush
;
match
goal
with
|
[
H
:
nil
|-
v
_
:
_
|-
_
]
=>
inversion
H
|
[
H1
:
_
|-
v
_
:
_
,
H2
:
_
|-
v
_
:
_
|-
_
]
=>
inversion
H1
;
crush
;
inversion
H2
;
crush
end
.
Qed
.
Lemma
shadow_hasType
'
:
forall
G2
G
e
t
,
G
|-
e
e
:
t
->
forall
G1
,
G
=
G1
++
(
x
,
xt
)
::
G2
->
forall
t
''
,
G1
|-
v
x
:
t
''
->
G1
++
G2
|-
e
e
:
t
.
Hint
Resolve
shadow_lookup
.
induction
1
;
crush
;
eauto
;
match
goal
with
|
[
H
:
(
?
x0
,
_
)
::
_
++
(
x
,
_
)
::
_
|-
e
_
:
_
|-
_
]
=>
destruct
(
var_eq
x0
x
)
;
subst
;
eauto
end
.
Qed
.
Lemma
shadow_hasType
:
forall
G1
G2
e
t
t
''
,
G1
++
(
x
,
xt
)
::
G2
|-
e
e
:
t
->
G1
|-
v
x
:
t
''
->
G1
++
G2
|-
e
e
:
t
.
intros
;
eapply
shadow_hasType
'
;
eauto
.
Qed
.
Hint
Resolve
shadow_hasType
.
Theorem
subst_hasType
:
forall
G
e2
t
,
G
|-
e
e2
:
t
->
forall
G1
G2
,
G
=
G1
++
(
x
,
xt
)
::
G2
->
x
##
G1
->
x
##
G2
->
G1
++
G2
|-
e
subst
e2
:
t
.
induction
1
;
crush
;
try
match
goal
with
|
[
|-
context
[
if
?
E
then
_
else
_
]
]
=>
destruct
E
end
;
crush
;
eauto
6
;
match
goal
with
|
[
H1
:
x
##
_
,
H2
:
x
##
_
,
H3
:
_
|-
v
x
:
_
|-
_
]
=>
rewrite
(
subst_lookup
''
H2
H1
H3
)
end
;
crush
.
Qed
.
Theorem
subst_hasType_closed
:
forall
e2
t
,
(
x
,
xt
)
::
nil
|-
e
e2
:
t
->
nil
|-
e
subst
e2
:
t
.
intros
;
change
(
nil
++
nil
|-
e
subst
e2
:
t
)
;
eapply
subst_hasType
;
eauto
.
Qed
.
End
subst
.
End
Concrete
.
src/Intro.v
View file @
0df7c729
...
@@ -203,6 +203,8 @@ Proof Search in Ltac & \texttt{Match.v} \\
...
@@ -203,6 +203,8 @@ Proof Search in Ltac & \texttt{Match.v} \\
\
hline
\
hline
Proof
by
Reflection
&
\
texttt
{
Reflection
.
v
}
\
\
Proof
by
Reflection
&
\
texttt
{
Reflection
.
v
}
\
\
\
hline
\
hline
First
-
Order
Variable
Representations
&
\
texttt
{
Firstorder
.
v
}
\
\
\
hline
\
end
{
tabular
}
\
end
{
center
}
\
end
{
tabular
}
\
end
{
center
}
%
*
)
%
*
)
src/toc.html
View file @
0df7c729
...
@@ -15,5 +15,6 @@
...
@@ -15,5 +15,6 @@
<li><a
href=
"Equality.html"
>
Reasoning About Equality Proofs
</a>
<li><a
href=
"Equality.html"
>
Reasoning About Equality Proofs
</a>
<li><a
href=
"Match.html"
>
Proof Search in Ltac
</a>
<li><a
href=
"Match.html"
>
Proof Search in Ltac
</a>
<li><a
href=
"Reflection.html"
>
Proof by Reflection
</a>
<li><a
href=
"Reflection.html"
>
Proof by Reflection
</a>
<li><a
href=
"Firstorder.html"
>
First-Order Variable Representations
</a>
</body></html>
</body></html>
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment