Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Contribute to GitLab
Sign in
Toggle navigation
C
cpdt
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
research
cpdt
Commits
0ee88d52
Commit
0ee88d52
authored
Oct 08, 2008
by
Adam Chlipala
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Correctness of insertion
parent
85ed612e
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
160 additions
and
69 deletions
+160
-69
MoreDep.v
src/MoreDep.v
+160
-69
No files found.
src/MoreDep.v
View file @
0ee88d52
...
...
@@ -353,6 +353,48 @@ Inductive rbtree : color -> nat -> Set :=
|
RedNode
:
forall
n
,
rbtree
Black
n
->
nat
->
rbtree
Black
n
->
rbtree
Red
n
|
BlackNode
:
forall
c1
c2
n
,
rbtree
c1
n
->
nat
->
rbtree
c2
n
->
rbtree
Black
(
S
n
)
.
Require
Import
Max
Min
.
Section
depth
.
Variable
f
:
nat
->
nat
->
nat
.
Fixpoint
depth
c
n
(
t
:
rbtree
c
n
)
{
struct
t
}
:
nat
:=
match
t
with
|
Leaf
=>
0
|
RedNode
_
t1
_
t2
=>
S
(
f
(
depth
t1
)
(
depth
t2
))
|
BlackNode
_
_
_
t1
_
t2
=>
S
(
f
(
depth
t1
)
(
depth
t2
))
end
.
End
depth
.
Theorem
depth_min
:
forall
c
n
(
t
:
rbtree
c
n
)
,
depth
min
t
>=
n
.
induction
t
;
crush
;
match
goal
with
|
[
|-
context
[
min
?
X
?
Y
]
]
=>
destruct
(
min_dec
X
Y
)
end
;
crush
.
Qed
.
Lemma
depth_max
'
:
forall
c
n
(
t
:
rbtree
c
n
)
,
match
c
with
|
Red
=>
depth
max
t
<=
2
*
n
+
1
|
Black
=>
depth
max
t
<=
2
*
n
end
.
induction
t
;
crush
;
match
goal
with
|
[
|-
context
[
max
?
X
?
Y
]
]
=>
destruct
(
max_dec
X
Y
)
end
;
crush
.
destruct
c1
;
crush
.
destruct
c2
;
crush
.
Qed
.
Theorem
depth_max
:
forall
c
n
(
t
:
rbtree
c
n
)
,
depth
max
t
<=
2
*
n
+
1.
intros
;
generalize
(
depth_max
'
t
)
;
destruct
c
;
crush
.
Qed
.
Theorem
balanced
:
forall
c
n
(
t
:
rbtree
c
n
)
,
2
*
depth
min
t
+
1
>=
depth
max
t
.
intros
;
generalize
(
depth_min
t
)
;
generalize
(
depth_max
t
)
;
crush
.
Qed
.
Inductive
rtree
:
nat
->
Set
:=
|
RedNode
'
:
forall
c1
c2
n
,
rbtree
c1
n
->
nat
->
rbtree
c2
n
->
rtree
n
.
...
...
@@ -366,7 +408,7 @@ Definition balance1 n (a : rtree n) (data : nat) c2 :=
|
t1
'
=>
fun
t2
=>
match
t2
in
rbtree
c
n
return
rbtree
_
n
->
rbtree
c2
n
->
{
c
:
color
&
rbtree
c
(
S
n
)
}
with
|
RedNode
_
b
x
c
=>
fun
a
d
=>
{<
RedNode
(
BlackNode
a
y
b
)
x
(
BlackNode
c
data
d
)
>}
|
b
=>
fun
a
t
=>
{<
BlackNode
a
data
b
>}
|
b
=>
fun
a
t
=>
{<
BlackNode
(
RedNode
a
y
b
)
data
t
>}
end
t1
'
end
t2
end
.
...
...
@@ -379,11 +421,27 @@ Definition balance2 n (a : rtree n) (data : nat) c2 :=
|
t1
'
=>
fun
t2
=>
match
t2
in
rbtree
c
n
return
rbtree
_
n
->
rbtree
c2
n
->
{
c
:
color
&
rbtree
c
(
S
n
)
}
with
|
RedNode
_
c
z
'
d
=>
fun
b
a
=>
{<
RedNode
(
BlackNode
a
data
b
)
z
(
BlackNode
c
z
'
d
)
>}
|
b
=>
fun
t
a
=>
{<
BlackNode
a
data
b
>}
|
b
=>
fun
a
t
=>
{<
BlackNode
t
data
(
RedNode
a
z
b
)
>}
end
t1
'
end
t2
end
.
Section
present
.
Variable
x
:
nat
.
Fixpoint
present
c
n
(
t
:
rbtree
c
n
)
{
struct
t
}
:
Prop
:=
match
t
with
|
Leaf
=>
False
|
RedNode
_
a
y
b
=>
present
a
\
/
x
=
y
\
/
present
b
|
BlackNode
_
_
_
a
y
b
=>
present
a
\
/
x
=
y
\
/
present
b
end
.
Definition
rpresent
n
(
t
:
rtree
n
)
:
Prop
:=
match
t
with
|
RedNode
'
_
_
_
a
y
b
=>
present
a
\
/
x
=
y
\
/
present
b
end
.
End
present
.
Section
insert
.
Variable
x
:
nat
.
...
...
@@ -434,77 +492,110 @@ Section insert.
Definition
insert
c
n
(
t
:
rbtree
c
n
)
:
insertResult
c
n
:=
makeBlack
(
ins
t
)
.
Fixpoint
present
c
n
(
t
:
rbtree
c
n
)
{
struct
t
}
:
bool
:=
match
t
with
|
Leaf
=>
false
|
RedNode
_
a
y
b
=>
if
eq_nat_dec
x
y
then
true
else
if
le_lt_dec
x
y
then
present
a
else
present
b
|
BlackNode
_
_
_
a
y
b
=>
if
eq_nat_dec
x
y
then
true
else
if
le_lt_dec
x
y
then
present
a
else
present
b
end
.
Record
rbtree
'
:
Set
:=
Rbtree
'
{
rtC
:
color
;
rtN
:
nat
;
rtT
:
rbtree
rtC
rtN
}.
Section
present
.
Variable
z
:
nat
.
Lemma
present_balance1
:
forall
n
(
a
:
rtree
n
)
(
y
:
nat
)
c2
(
b
:
rbtree
c2
n
)
,
present
z
(
projT2
(
balance1
a
y
b
))
<->
rpresent
z
a
\
/
z
=
y
\
/
present
z
b
.
destruct
a
;
crush
;
repeat
match
goal
with
|
[
H
:
context
[
match
?
T
with
|
Leaf
=>
_
|
RedNode
_
_
_
_
=>
_
|
BlackNode
_
_
_
_
_
_
=>
_
end
]
|-
_
]
=>
pose
T
;
dep_destruct
T
;
crush
|
[
|-
context
[
match
?
T
with
|
Leaf
=>
_
|
RedNode
_
_
_
_
=>
_
|
BlackNode
_
_
_
_
_
_
=>
_
end
]
]
=>
pose
T
;
dep_destruct
T
;
crush
end
.
Qed
.
Lemma
present_balance2
:
forall
n
(
a
:
rtree
n
)
(
y
:
nat
)
c2
(
b
:
rbtree
c2
n
)
,
present
z
(
projT2
(
balance2
a
y
b
))
<->
rpresent
z
a
\
/
z
=
y
\
/
present
z
b
.
destruct
a
;
crush
;
repeat
match
goal
with
|
[
H
:
context
[
match
?
T
with
|
Leaf
=>
_
|
RedNode
_
_
_
_
=>
_
|
BlackNode
_
_
_
_
_
_
=>
_
end
]
|-
_
]
=>
pose
T
;
dep_destruct
T
;
crush
|
[
|-
context
[
match
?
T
with
|
Leaf
=>
_
|
RedNode
_
_
_
_
=>
_
|
BlackNode
_
_
_
_
_
_
=>
_
end
]
]
=>
pose
T
;
dep_destruct
T
;
crush
end
.
Qed
.
Definition
present_insResult
c
n
:=
match
c
return
(
rbtree
c
n
->
insResult
c
n
->
Prop
)
with
|
Red
=>
fun
t
r
=>
rpresent
z
r
<->
z
=
x
\
/
present
z
t
|
Black
=>
fun
t
r
=>
present
z
(
projT2
r
)
<->
z
=
x
\
/
present
z
t
end
.
Definition
rpresent
n
(
t
:
rtree
n
)
:
bool
:=
match
t
with
|
RedNode
'
_
_
_
a
y
b
=>
if
eq_nat_dec
x
y
then
true
else
if
le_lt_dec
x
y
then
present
a
else
present
b
end
.
Theorem
present_ins
:
forall
c
n
(
t
:
rbtree
c
n
)
,
present_insResult
t
(
ins
t
)
.
induction
t
;
crush
;
repeat
(
match
goal
with
|
[
H
:
context
[
if
?
E
then
_
else
_
]
|-
_
]
=>
destruct
E
|
[
|-
context
[
if
?
E
then
_
else
_
]
]
=>
destruct
E
|
[
H
:
context
[
match
?
C
with
Red
=>
_
|
Black
=>
_
end
]
|-
_
]
=>
destruct
C
end
;
crush
)
;
try
match
goal
with
|
[
H
:
context
[
balance1
?
A
?
B
?
C
]
|-
_
]
=>
generalize
(
present_balance1
A
B
C
)
end
;
try
match
goal
with
|
[
H
:
context
[
balance2
?
A
?
B
?
C
]
|-
_
]
=>
generalize
(
present_balance2
A
B
C
)
end
;
try
match
goal
with
|
[
|-
context
[
balance1
?
A
?
B
?
C
]
]
=>
generalize
(
present_balance1
A
B
C
)
end
;
try
match
goal
with
|
[
|-
context
[
balance2
?
A
?
B
?
C
]
]
=>
generalize
(
present_balance2
A
B
C
)
end
;
intuition
;
match
goal
with
|
[
z
:
nat
,
x
:
nat
|-
_
]
=>
match
goal
with
|
[
H
:
z
=
x
|-
_
]
=>
rewrite
H
in
*;
clear
H
end
end
;
tauto
.
Qed
.
Theorem
present_insert_Red
:
forall
n
(
t
:
rbtree
Red
n
)
,
present
z
(
insert
t
)
<->
(
z
=
x
\
/
present
z
t
)
.
unfold
insert
;
inversion
t
;
generalize
(
present_ins
t
)
;
simpl
;
dep_destruct
(
ins
t
)
;
tauto
.
Qed
.
Theorem
present_insert_Black
:
forall
n
(
t
:
rbtree
Black
n
)
,
present
z
(
projT2
(
insert
t
))
<->
(
z
=
x
\
/
present
z
t
)
.
unfold
insert
;
inversion
t
;
generalize
(
present_ins
t
)
;
simpl
;
dep_destruct
(
ins
t
)
;
tauto
.
Qed
.
End
present
.
End
insert
.
Require
Import
Max
Min
.
Section
depth
.
Variable
f
:
nat
->
nat
->
nat
.
Fixpoint
depth
c
n
(
t
:
rbtree
c
n
)
{
struct
t
}
:
nat
:=
match
t
with
|
Leaf
=>
0
|
RedNode
_
t1
_
t2
=>
S
(
f
(
depth
t1
)
(
depth
t2
))
|
BlackNode
_
_
_
t1
_
t2
=>
S
(
f
(
depth
t1
)
(
depth
t2
))
end
.
End
depth
.
Theorem
depth_min
:
forall
c
n
(
t
:
rbtree
c
n
)
,
depth
min
t
>=
n
.
induction
t
;
crush
;
match
goal
with
|
[
|-
context
[
min
?
X
?
Y
]
]
=>
destruct
(
min_dec
X
Y
)
end
;
crush
.
Qed
.
Lemma
depth_max
'
:
forall
c
n
(
t
:
rbtree
c
n
)
,
match
c
with
|
Red
=>
depth
max
t
<=
2
*
n
+
1
|
Black
=>
depth
max
t
<=
2
*
n
end
.
induction
t
;
crush
;
match
goal
with
|
[
|-
context
[
max
?
X
?
Y
]
]
=>
destruct
(
max_dec
X
Y
)
end
;
crush
.
destruct
c1
;
crush
.
destruct
c2
;
crush
.
Qed
.
Theorem
depth_max
:
forall
c
n
(
t
:
rbtree
c
n
)
,
depth
max
t
<=
2
*
n
+
1.
intros
;
generalize
(
depth_max
'
t
)
;
destruct
c
;
crush
.
Qed
.
Theorem
balanced
:
forall
c
n
(
t
:
rbtree
c
n
)
,
2
*
depth
min
t
+
1
>=
depth
max
t
.
intros
;
generalize
(
depth_min
t
)
;
generalize
(
depth_max
t
)
;
crush
.
Qed
.
(
**
*
A
Certified
Regular
Expression
Matcher
*
)
(
**
Another
interesting
example
is
regular
expressions
with
dependent
types
that
express
which
predicates
over
strings
particular
regexps
implement
.
We
can
then
assign
a
dependent
type
to
a
regular
expression
matching
function
,
guaranteeing
that
it
always
decides
the
string
property
that
we
expect
it
to
decide
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment