Commit 12b4adcf authored by Adam Chlipala's avatar Adam Chlipala

Start of stack machine example

parent fca60eb4
...@@ -5,3 +5,4 @@ syntax: glob ...@@ -5,3 +5,4 @@ syntax: glob
*.depend *.depend
*.vo *.vo
*/Makefile.coq */Makefile.coq
*/.coq_globals
MODULES := Tactics StackMachine
VS := $(MODULES:%=%.v)
GLOBALS := .coq_globals
.PHONY: coq clean
coq: Makefile.coq
make -f Makefile.coq
Makefile.coq: Makefile $(VS)
coq_makefile $(VS) \
COQC = "coqc -impredicative-set -dump-glob $(GLOBALS)" \
-o Makefile.coq
clean:: Makefile.coq
make -f Makefile.coq clean
rm -f Makefile.coq .depend
(* Copyright (c) 2008, Adam Chlipala
*
* This work is licensed under a
* Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
* Unported License.
* The license text is available at:
* http://creativecommons.org/licenses/by-nc-nd/3.0/
*)
Require Import List.
Require Import Tactics.
(** * Arithmetic expressions over natural numbers *)
Module Nat.
(** ** Source language *)
Inductive binop : Set := Plus | Times.
Inductive exp : Set :=
| Const : nat -> exp
| Binop : binop -> exp -> exp -> exp.
Definition binopDenote (b : binop) : nat -> nat -> nat :=
match b with
| Plus => plus
| Times => mult
end.
Fixpoint expDenote (e : exp) : nat :=
match e with
| Const n => n
| Binop b e1 e2 => (binopDenote b) (expDenote e1) (expDenote e2)
end.
(** ** Target language *)
Inductive instr : Set :=
| IConst : nat -> instr
| IBinop : binop -> instr.
Definition prog := list instr.
Definition stack := list nat.
Definition instrDenote (i : instr) (s : stack) : option stack :=
match i with
| IConst n => Some (n :: s)
| IBinop b =>
match s with
| arg1 :: arg2 :: s' => Some ((binopDenote b) arg1 arg2 :: s')
| _ => None
end
end.
Fixpoint progDenote (p : prog) (s : stack) {struct p} : option stack :=
match p with
| nil => Some s
| i :: p' =>
match instrDenote i s with
| None => None
| Some s' => progDenote p' s'
end
end.
(** ** Translation *)
Fixpoint compile (e : exp) : prog :=
match e with
| Const n => IConst n :: nil
| Binop b e1 e2 => compile e2 ++ compile e1 ++ IBinop b :: nil
end.
(** ** Translation correctness *)
Lemma compileCorrect' : forall e s p, progDenote (compile e ++ p) s =
progDenote p (expDenote e :: s).
induction e.
intros.
unfold compile.
unfold expDenote.
simpl.
reflexivity.
intros.
unfold compile.
fold compile.
unfold expDenote.
fold expDenote.
rewrite app_ass.
rewrite IHe2.
rewrite app_ass.
rewrite IHe1.
simpl.
reflexivity.
Abort.
Lemma compileCorrect' : forall e s p, progDenote (compile e ++ p) s =
progDenote p (expDenote e :: s).
induction e; crush.
Qed.
Theorem compileCorrect : forall e, progDenote (compile e) nil = Some (expDenote e :: nil).
intro.
rewrite (app_nil_end (compile e)).
rewrite compileCorrect'.
reflexivity.
Qed.
End Nat.
(* Copyright (c) 2008, Adam Chlipala
*
* This work is licensed under a
* Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
* Unported License.
* The license text is available at:
* http://creativecommons.org/licenses/by-nc-nd/3.0/
*)
Require Import List.
Ltac rewriteHyp :=
match goal with
| [ H : _ |- _ ] => rewrite H
end.
Ltac rewriterP := repeat (rewriteHyp; autorewrite with cpdt in *).
Ltac rewriter := autorewrite with cpdt in *; rewriterP.
Hint Rewrite app_ass : cpdt.
Ltac sintuition := simpl; intuition.
Ltac crush := sintuition; rewriter; sintuition.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment