Commit 9f264135 authored by Adam Chlipala's avatar Adam Chlipala

OpSem code

parent 31cc32db
......@@ -2,7 +2,7 @@ MODULES_NODOC := Axioms Tactics MoreSpecif DepList
MODULES_PROSE := Intro
MODULES_CODE := StackMachine InductiveTypes Predicates Coinductive Subset \
MoreDep DataStruct Equality Generic Universes Match Reflection \
Large Firstorder Hoas Interps Extensional Intensional Impure
Large Firstorder Hoas Interps Extensional Intensional OpSem
MODULES_DOC := $(MODULES_PROSE) $(MODULES_CODE)
MODULES := $(MODULES_NODOC) $(MODULES_DOC)
VS := $(MODULES:%=src/%.v)
......
(* Copyright (c) 2008-2009, Adam Chlipala
*
* This work is licensed under a
* Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
* Unported License.
* The license text is available at:
* http://creativecommons.org/licenses/by-nc-nd/3.0/
*)
(** %\chapter{Modeling Impure Languages}% *)
(** TODO: This chapter! (Old version was too impredicative) *)
......@@ -223,7 +223,7 @@ Extensional Transformations & \texttt{Extensional.v} \\
\hline
Intensional Transformations & \texttt{Intensional.v} \\
\hline
Modeling Impure Languages & \texttt{Impure.v} \\
Higher-Order Operational Semantics & \texttt{OpSem.v} \\
\hline
\end{tabular} \end{center}
......
(* Copyright (c) 2008-2009, Adam Chlipala
*
* This work is licensed under a
* Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
* Unported License.
* The license text is available at:
* http://creativecommons.org/licenses/by-nc-nd/3.0/
*)
(* begin hide *)
Require Import Arith List.
Require Import Tactics.
Set Implicit Arguments.
(* end hide *)
(** %\chapter{Higher-Order Operational Semantics}% *)
(** * Closure Heaps *)
Section lookup.
Variable A : Type.
Fixpoint lookup (ls : list A) (n : nat) : option A :=
match ls with
| nil => None
| v :: ls' => if eq_nat_dec n (length ls') then Some v else lookup ls' n
end.
Definition extends (ls1 ls2 : list A) := exists ls, ls2 = ls ++ ls1.
Infix "##" := lookup (left associativity, at level 1).
Infix "~>" := extends (no associativity, at level 80).
Theorem lookup1 : forall x ls,
(x :: ls) ## (length ls) = Some x.
crush; match goal with
| [ |- context[if ?E then _ else _] ] => destruct E
end; crush.
Qed.
Theorem extends_refl : forall ls, ls ~> ls.
exists nil; reflexivity.
Qed.
Theorem extends1 : forall v ls, ls ~> v :: ls.
intros; exists (v :: nil); reflexivity.
Qed.
Theorem extends_trans : forall ls1 ls2 ls3,
ls1 ~> ls2
-> ls2 ~> ls3
-> ls1 ~> ls3.
intros ? ? ? [l1 ?] [l2 ?]; exists (l2 ++ l1); crush.
Qed.
Lemma lookup_contra : forall n v ls,
ls ## n = Some v
-> n >= length ls
-> False.
induction ls; crush;
match goal with
| [ _ : context[if ?E then _ else _] |- _ ] => destruct E
end; crush.
Qed.
Hint Resolve lookup_contra.
Theorem extends_lookup : forall ls1 ls2 n v,
ls1 ~> ls2
-> ls1 ## n = Some v
-> ls2 ## n = Some v.
intros ? ? ? ? [l ?]; crush; induction l; crush;
match goal with
| [ |- context[if ?E then _ else _] ] => destruct E
end; crush; elimtype False; eauto.
Qed.
End lookup.
Infix "##" := lookup (left associativity, at level 1).
Infix "~>" := extends (no associativity, at level 80).
Hint Resolve lookup1 extends_refl extends1 extends_trans extends_lookup.
(** * Languages and Translation *)
Module Source.
Section exp.
Variable var : Type.
Inductive exp : Type :=
| Var : var -> exp
| App : exp -> exp -> exp
| Abs : (var -> exp) -> exp
| Bool : bool -> exp.
End exp.
Implicit Arguments Bool [var].
Definition Exp := forall var, exp var.
Inductive val : Set :=
| VFun : nat -> val
| VBool : bool -> val.
Definition closure := val -> exp val.
Definition closures := list closure.
Inductive eval : closures -> exp val -> closures -> val -> Prop :=
| EvVar : forall cs v,
eval cs (Var v) cs v
| EvApp : forall cs1 e1 e2 cs2 v1 c cs3 v2 cs4 v3,
eval cs1 e1 cs2 (VFun v1)
-> eval cs2 e2 cs3 v2
-> cs2 ## v1 = Some c
-> eval cs3 (c v2) cs4 v3
-> eval cs1 (App e1 e2) cs4 v3
| EvAbs : forall cs c,
eval cs (Abs c) (c :: cs) (VFun (length cs))
| EvBool : forall cs b,
eval cs (Bool b) cs (VBool b).
Definition Eval (cs1 : closures) (E : Exp) (cs2 : closures) (v : val) := eval cs1 (E _) cs2 v.
Section exp_equiv.
Variables var1 var2 : Type.
Inductive exp_equiv : list (var1 * var2) -> exp var1 -> exp var2 -> Prop :=
| EqVar : forall G v1 v2,
In (v1, v2) G
-> exp_equiv G (Var v1) (Var v2)
| EqApp : forall G f1 x1 f2 x2,
exp_equiv G f1 f2
-> exp_equiv G x1 x2
-> exp_equiv G (App f1 x1) (App f2 x2)
| EqAbs : forall G f1 f2,
(forall v1 v2, exp_equiv ((v1, v2) :: G) (f1 v1) (f2 v2))
-> exp_equiv G (Abs f1) (Abs f2)
| EqBool : forall G b,
exp_equiv G (Bool b) (Bool b).
End exp_equiv.
Definition Wf (E : Exp) := forall var1 var2, exp_equiv nil (E var1) (E var2).
End Source.
Module CPS.
Section exp.
Variable var : Type.
Inductive prog : Type :=
| Halt : var -> prog
| App : var -> var -> prog
| Bind : primop -> (var -> prog) -> prog
with primop : Type :=
| Abs : (var -> prog) -> primop
| Bool : bool -> primop
| Pair : var -> var -> primop
| Fst : var -> primop
| Snd : var -> primop.
End exp.
Implicit Arguments Bool [var].
Notation "x <- p ; e" := (Bind p (fun x => e))
(right associativity, at level 76, p at next level).
Definition Prog := forall var, prog var.
Definition Primop := forall var, primop var.
Inductive val : Type :=
| VFun : nat -> val
| VBool : bool -> val
| VPair : val -> val -> val.
Definition closure := val -> prog val.
Definition closures := list closure.
Inductive eval : closures -> prog val -> val -> Prop :=
| EvHalt : forall cs v,
eval cs (Halt v) v
| EvApp : forall cs n v2 c v3,
cs ## n = Some c
-> eval cs (c v2) v3
-> eval cs (App (VFun n) v2) v3
| EvBind : forall cs1 p e cs2 v1 v2,
evalP cs1 p cs2 v1
-> eval cs2 (e v1) v2
-> eval cs1 (Bind p e) v2
with evalP : closures -> primop val -> closures -> val -> Prop :=
| EvAbs : forall cs c,
evalP cs (Abs c) (c :: cs) (VFun (length cs))
| EvPair : forall cs v1 v2,
evalP cs (Pair v1 v2) cs (VPair v1 v2)
| EvFst : forall cs v1 v2,
evalP cs (Fst (VPair v1 v2)) cs v1
| EvSnd : forall cs v1 v2,
evalP cs (Snd (VPair v1 v2)) cs v2
| EvBool : forall cs b,
evalP cs (Bool b) cs (VBool b).
Definition Eval (cs : closures) (P : Prog) (v : val) := eval cs (P _) v.
End CPS.
Import Source CPS.
Reserved Notation "x <-- e1 ; e2" (right associativity, at level 76, e1 at next level).
Section cpsExp.
Variable var : Type.
Import Source.
Fixpoint cpsExp (e : exp var)
: (var -> prog var) -> prog var :=
match e with
| Var v => fun k => k v
| App e1 e2 => fun k =>
f <-- e1;
x <-- e2;
kf <- CPS.Abs k;
p <- Pair x kf;
CPS.App f p
| Abs e' => fun k =>
f <- CPS.Abs (var := var) (fun p =>
x <- Fst p;
kf <- Snd p;
r <-- e' x;
CPS.App kf r);
k f
| Bool b => fun k =>
x <- CPS.Bool b;
k x
end
where "x <-- e1 ; e2" := (cpsExp e1 (fun x => e2)).
End cpsExp.
Notation "x <-- e1 ; e2" := (cpsExp e1 (fun x => e2)).
Definition CpsExp (E : Exp) : Prog := fun _ => cpsExp (E _) (Halt (var := _)).
(** * Correctness Proof *)
Definition cpsFunc var (e' : var -> Source.exp var) :=
fun p : var =>
x <- Fst p;
kf <- Snd p;
r <-- e' x;
CPS.App kf r.
Section cr.
Variable s1 : Source.closures.
Variable s2 : CPS.closures.
Import Source.
Inductive cr : Source.val -> CPS.val -> Prop :=
| CrFun : forall l1 l2 G f1 f2,
(forall x1 x2, exp_equiv ((x1, x2) :: G) (f1 x1) (f2 x2))
-> (forall x1 x2, In (x1, x2) G -> cr x1 x2)
-> s1 ## l1 = Some f1
-> s2 ## l2 = Some (cpsFunc f2)
-> cr (Source.VFun l1) (CPS.VFun l2)
| CrBool : forall b,
cr (Source.VBool b) (CPS.VBool b).
End cr.
Notation "s1 & s2 |-- v1 ~~ v2" := (cr s1 s2 v1 v2) (no associativity, at level 70).
Hint Constructors cr.
Lemma eval_monotone : forall cs1 e cs2 v,
Source.eval cs1 e cs2 v
-> cs1 ~> cs2.
induction 1; crush; eauto.
Qed.
Lemma cr_monotone : forall cs1 cs2 cs1' cs2',
cs1 ~> cs1'
-> cs2 ~> cs2'
-> forall v1 v2, cs1 & cs2 |-- v1 ~~ v2
-> cs1' & cs2' |-- v1 ~~ v2.
induction 3; crush; eauto.
Qed.
Hint Resolve eval_monotone cr_monotone.
Lemma push : forall G s1 s2 v1' v2',
(forall v1 v2, In (v1, v2) G -> s1 & s2 |-- v1 ~~ v2)
-> s1 & s2 |-- v1' ~~ v2'
-> (forall v1 v2, (v1', v2') = (v1, v2) \/ In (v1, v2) G -> s1 & s2 |-- v1 ~~ v2).
crush.
Qed.
Hint Resolve push.
Ltac evalOne :=
match goal with
| [ |- CPS.eval ?cs ?e ?v ] =>
let e := eval hnf in e in
change (CPS.eval cs e v);
econstructor; [ solve [ eauto ] | ]
end.
Hint Constructors evalP.
Hint Extern 1 (CPS.eval _ _ _) => evalOne; repeat evalOne.
Lemma cpsExp_correct : forall s1 e1 s1' r1,
Source.eval s1 e1 s1' r1
-> forall G (e2 : exp CPS.val),
exp_equiv G e1 e2
-> forall s2,
(forall v1 v2, In (v1, v2) G -> s1 & s2 |-- v1 ~~ v2)
-> forall k, exists s2', exists r2,
(forall r, CPS.eval s2' (k r2) r
-> CPS.eval s2 (cpsExp e2 k) r)
/\ s1' & s2' |-- r1 ~~ r2
/\ s2 ~> s2'.
induction 1; inversion 1; crush;
repeat (match goal with
| [ H : _ & _ |-- Source.VFun _ ~~ _ |- _ ] => inversion H; clear H
| [ H1 : ?E = _, H2 : ?E = _ |- _ ] => rewrite H1 in H2; clear H1
| [ H : forall G e2, exp_equiv G ?E e2 -> _ |- _ ] =>
match goal with
| [ _ : Source.eval ?CS E _ _, _ : Source.eval _ ?E' ?CS _,
_ : forall G e2, exp_equiv G ?E' e2 -> _ |- _ ] => fail 1
| _ => match goal with
| [ k : val -> prog val, _ : _ & ?cs |-- _ ~~ _, _ : context[VFun] |- _ ] =>
guess (k :: cs) H
| _ => guess tt H
end
end
end; crush); eauto 13.
Qed.
Lemma CpsExp_correct : forall E cs b,
Source.Eval nil E cs (Source.VBool b)
-> Wf E
-> CPS.Eval nil (CpsExp E) (CPS.VBool b).
Hint Constructors CPS.eval.
unfold Source.Eval, CPS.Eval, CpsExp; intros ? ? ? H1 H2;
generalize (cpsExp_correct H1 (H2 _ _) (s2 := nil)
(fun _ _ pf => match pf with end) (Halt (var := _))); crush;
match goal with
| [ H : _ & _ |-- _ ~~ _ |- _ ] => inversion H
end; crush.
Qed.
......@@ -157,24 +157,25 @@ Ltac clear_all :=
| [ H : _ |- _ ] => clear H
end.
Ltac guess tac H :=
Ltac guess v H :=
repeat match type of H with
| forall x : ?T, _ =>
match type of T with
| Prop =>
(let H' := fresh "H'" in
assert (H' : T); [
solve [ tac ]
solve [ eauto 6 ]
| generalize (H H'); clear H H'; intro H ])
|| fail 1
| _ =>
let x := fresh "x" in
(generalize (H v); clear H; intro H)
|| let x := fresh "x" in
evar (x : T);
let x' := eval cbv delta [x] in x in
clear x; generalize (H x'); clear H; intro H
end
end.
Ltac guessKeep tac H :=
Ltac guessKeep v H :=
let H' := fresh "H'" in
generalize H; intro H'; guess tac H'.
generalize H; intro H'; guess v H'.
......@@ -23,6 +23,6 @@
<li><a href="Interps.html">Type-Theoretic Interpreters</a>
<li><a href="Extensional.html">Extensional Transformations</a>
<li><a href="Intensional.html">Intensional Transformations</a>
<li><a href="Impure.html">Modeling Impure Languages</a>
<li><a href="OpSem.html">Higher-Order Operational Semantics</a>
</body></html>
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment