Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Contribute to GitLab
Sign in
Toggle navigation
C
cpdt
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
research
cpdt
Commits
a6bdb33e
Commit
a6bdb33e
authored
Dec 07, 2009
by
Adam Chlipala
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
More maint & debug code
parent
b00228e1
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
50 additions
and
1 deletion
+50
-1
Large.v
src/Large.v
+50
-1
No files found.
src/Large.v
View file @
a6bdb33e
...
...
@@ -401,6 +401,27 @@ Theorem cfold_correct : forall t (e : exp t), expDenote e = expDenote (cfold e).
end
;
crush
)
.
Qed
.
Section
slow
.
Hint
Resolve
trans_eq
.
Variable
A
:
Set
.
Variables
P
Q
R
S
:
A
->
A
->
Prop
.
Variable
f
:
A
->
A
.
Hypothesis
H1
:
forall
x
y
,
P
x
y
->
Q
x
y
->
R
x
y
->
f
x
=
f
y
.
Hypothesis
H2
:
forall
x
y
,
S
x
y
->
R
x
y
.
Lemma
slow
:
forall
x
y
,
P
x
y
->
Q
x
y
->
S
x
y
->
f
x
=
f
y
.
debug
eauto
.
Qed
.
Hypothesis
H3
:
forall
x
y
,
x
=
y
->
f
x
=
f
y
.
Lemma
slow
'
:
forall
x
y
,
P
x
y
->
Q
x
y
->
S
x
y
->
f
x
=
f
y
.
debug
eauto
.
Qed
.
End
slow
.
(
**
*
Modules
*
)
...
...
@@ -425,7 +446,7 @@ Module Type GROUP_THEOREMS.
Axiom
unique_ident
:
forall
e
'
,
(
forall
a
,
M
.
f
e
'
a
=
a
)
->
e
'
=
M
.
e
.
End
GROUP_THEOREMS
.
Module
Group
(
M
:
GROUP
)
:
GROUP_THEOREMS
.
Module
Group
(
M
:
GROUP
)
:
GROUP_THEOREMS
with
Module
M
:=
M
.
Module
M
:=
M
.
Import
M
.
...
...
@@ -457,3 +478,31 @@ Module Group (M : GROUP) : GROUP_THEOREMS.
apply
ident
'
.
Qed
.
End
Group
.
Require
Import
ZArith
.
Open
Scope
Z_scope
.
Module
Int
.
Definition
G
:=
Z
.
Definition
f
x
y
:=
x
+
y
.
Definition
e
:=
0.
Definition
i
x
:=
-
x
.
Theorem
assoc
:
forall
a
b
c
,
f
(
f
a
b
)
c
=
f
a
(
f
b
c
)
.
unfold
f
;
crush
.
Qed
.
Theorem
ident
:
forall
a
,
f
e
a
=
a
.
unfold
f
,
e
;
crush
.
Qed
.
Theorem
inverse
:
forall
a
,
f
(
i
a
)
a
=
e
.
unfold
f
,
i
,
e
;
crush
.
Qed
.
End
Int
.
Module
IntTheorems
:=
Group
(
Int
)
.
Check
IntTheorems
.
unique_ident
.
Theorem
unique_ident
:
forall
e
'
,
(
forall
a
,
e
'
+
a
=
a
)
->
e
'
=
0.
exact
IntTheorems
.
unique_ident
.
Qed
.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment