Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Contribute to GitLab
Sign in
Toggle navigation
C
cpdt
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
research
cpdt
Commits
b5d37b21
Commit
b5d37b21
authored
Nov 02, 2008
by
Adam Chlipala
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Simplify Concrete
parent
cd169938
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
23 additions
and
81 deletions
+23
-81
Firstorder.v
src/Firstorder.v
+23
-81
No files found.
src/Firstorder.v
View file @
b5d37b21
...
@@ -78,46 +78,9 @@ Module Concrete.
...
@@ -78,46 +78,9 @@ Module Concrete.
Hint
Constructors
hasType
.
Hint
Constructors
hasType
.
Notation
"x ## G"
:=
(
forall
t
'
:
type
,
In
(
x
,
t
'
)
G
->
False
)
(
no
associativity
,
at
level
90
)
.
Notation
"G' # G"
:=
(
forall
(
x
:
var
)
(
t
:
type
)
,
In
(
x
,
t
)
G
->
x
##
G
'
)
(
no
associativity
,
at
level
90
)
.
Lemma
lookup_In
:
forall
G
x
t
,
G
|-
v
x
:
t
->
In
(
x
,
t
)
G
.
induction
1
;
crush
.
Qed
.
Hint
Resolve
lookup_In
.
Lemma
disjoint_invert1
:
forall
G
x
t
G
'
x
'
t
'
,
G
|-
v
x
:
t
->
(
x
'
,
t
'
)
::
G
'
#
G
->
x
<>
x
'
.
crush
;
eauto
.
Qed
.
Lemma
disjoint_invert2
:
forall
G
'
G
p
,
p
::
G
'
#
G
->
G
'
#
G
.
firstorder
.
Qed
.
Hint
Resolve
disjoint_invert1
disjoint_invert2
.
Hint
Extern
1
(
_
<>
_
)
=>
(
intro
;
subst
)
.
Lemma
weaken_lookup
'
:
forall
G
x
t
,
G
|-
v
x
:
t
->
forall
G
'
,
G
'
#
G
->
G
'
++
G
|-
v
x
:
t
.
induction
G
'
as
[
|
[
x
'
t
'
]
tl
]
;
crush
;
eauto
9.
Qed
.
Lemma
weaken_lookup
:
forall
x
t
G
'
G1
,
Lemma
weaken_lookup
:
forall
x
t
G
'
G1
,
G1
|-
v
x
:
t
G1
|-
v
x
:
t
->
G1
++
G
'
|-
v
x
:
t
.
->
G1
++
G
'
|-
v
x
:
t
.
Hint
Resolve
weaken_lookup
'
.
induction
G1
as
[
|
[
x
'
t
'
]
tl
]
;
crush
;
induction
G1
as
[
|
[
x
'
t
'
]
tl
]
;
crush
;
match
goal
with
match
goal
with
|
[
H
:
_
|-
v
_
:
_
|-
_
]
=>
inversion
H
;
crush
|
[
H
:
_
|-
v
_
:
_
|-
_
]
=>
inversion
H
;
crush
...
@@ -145,14 +108,7 @@ Module Concrete.
...
@@ -145,14 +108,7 @@ Module Concrete.
intros
;
rewrite
(
app_nil_end
G
)
;
apply
weaken_hasType
;
auto
.
intros
;
rewrite
(
app_nil_end
G
)
;
apply
weaken_hasType
;
auto
.
Qed
.
Qed
.
Theorem
weaken_hasType1
:
forall
e
t
,
Hint
Resolve
weaken_hasType_closed
.
nil
|-
e
e
:
t
->
forall
x
t
'
,
(
x
,
t
'
)
::
nil
|-
e
e
:
t
.
intros
;
change
((
x
,
t
'
)
::
nil
)
with
(((
x
,
t
'
)
::
nil
)
++
nil
)
;
apply
weaken_hasType
;
crush
.
Qed
.
Hint
Resolve
weaken_hasType_closed
weaken_hasType1
.
Section
subst
.
Section
subst
.
Variable
x
:
var
.
Variable
x
:
var
.
...
@@ -175,14 +131,9 @@ Module Concrete.
...
@@ -175,14 +131,9 @@ Module Concrete.
Variable
xt
:
type
.
Variable
xt
:
type
.
Hypothesis
Ht
'
:
nil
|-
e
e1
:
xt
.
Hypothesis
Ht
'
:
nil
|-
e
e1
:
xt
.
Lemma
subst_lookup
'
:
forall
G2
x
'
t
,
Notation
"x # G"
:=
(
forall
t
'
:
type
,
In
(
x
,
t
'
)
G
->
False
)
(
no
associativity
,
at
level
90
)
.
x
'
##
G2
->
(
x
,
xt
)
::
G2
|-
v
x
'
:
t
->
t
=
xt
.
inversion
2
;
crush
;
elimtype
False
;
eauto
.
Qed
.
Lemma
subst_lookup
:
forall
x
'
t
,
Lemma
subst_lookup
'
:
forall
x
'
t
,
x
<>
x
'
x
<>
x
'
->
forall
G1
,
G1
++
(
x
,
xt
)
::
nil
|-
v
x
'
:
t
->
forall
G1
,
G1
++
(
x
,
xt
)
::
nil
|-
v
x
'
:
t
->
G1
|-
v
x
'
:
t
.
->
G1
|-
v
x
'
:
t
.
...
@@ -192,14 +143,12 @@ Module Concrete.
...
@@ -192,14 +143,12 @@ Module Concrete.
end
;
crush
.
end
;
crush
.
Qed
.
Qed
.
Hint
Resolve
subst_lookup
.
Hint
Resolve
subst_lookup
'
.
Lemma
subst_lookup
''
:
forall
x
'
t
G1
,
Lemma
subst_lookup
:
forall
x
'
t
G1
,
x
'
#
#
G1
x
'
#
G1
->
G1
++
(
x
,
xt
)
::
nil
|-
v
x
'
:
t
->
G1
++
(
x
,
xt
)
::
nil
|-
v
x
'
:
t
->
t
=
xt
.
->
t
=
xt
.
Hint
Resolve
subst_lookup
'
.
induction
G1
as
[
|
[
x
''
t
'
]
tl
]
;
crush
;
eauto
;
induction
G1
as
[
|
[
x
''
t
'
]
tl
]
;
crush
;
eauto
;
match
goal
with
match
goal
with
|
[
H
:
_
|-
v
_
:
_
|-
_
]
=>
inversion
H
|
[
H
:
_
|-
v
_
:
_
|-
_
]
=>
inversion
H
...
@@ -209,19 +158,7 @@ Module Concrete.
...
@@ -209,19 +158,7 @@ Module Concrete.
end
.
end
.
Qed
.
Qed
.
Implicit
Arguments
subst_lookup
''
[
x
'
t
G1
]
.
Implicit
Arguments
subst_lookup
[
x
'
t
G1
]
.
Lemma
disjoint_cons
:
forall
x
x
'
t
(
G
:
ctx
)
,
x
##
G
->
x
'
<>
x
->
x
##
(
x
'
,
t
)
::
G
.
firstorder
;
match
goal
with
|
[
H
:
(
_
,
_
)
=
(
_
,
_
)
|-
_
]
=>
injection
H
end
;
crush
.
Qed
.
Hint
Resolve
disjoint_cons
.
Lemma
shadow_lookup
:
forall
v
t
t
'
G1
,
Lemma
shadow_lookup
:
forall
v
t
t
'
G1
,
G1
|-
v
x
:
t
'
G1
|-
v
x
:
t
'
...
@@ -258,18 +195,30 @@ Module Concrete.
...
@@ -258,18 +195,30 @@ Module Concrete.
Hint
Resolve
shadow_hasType
.
Hint
Resolve
shadow_hasType
.
Lemma
disjoint_cons
:
forall
x
x
'
t
(
G
:
ctx
)
,
x
#
G
->
x
'
<>
x
->
x
#
(
x
'
,
t
)
::
G
.
firstorder
;
match
goal
with
|
[
H
:
(
_
,
_
)
=
(
_
,
_
)
|-
_
]
=>
injection
H
end
;
crush
.
Qed
.
Hint
Resolve
disjoint_cons
.
Theorem
subst_hasType
:
forall
G
e2
t
,
Theorem
subst_hasType
:
forall
G
e2
t
,
G
|-
e
e2
:
t
G
|-
e
e2
:
t
->
forall
G1
,
G
=
G1
++
(
x
,
xt
)
::
nil
->
forall
G1
,
G
=
G1
++
(
x
,
xt
)
::
nil
->
x
#
#
G1
->
x
#
G1
->
G1
|-
e
subst
e2
:
t
.
->
G1
|-
e
subst
e2
:
t
.
induction
1
;
crush
;
induction
1
;
crush
;
try
match
goal
with
try
match
goal
with
|
[
|-
context
[
if
?
E
then
_
else
_
]
]
=>
destruct
E
|
[
|-
context
[
if
?
E
then
_
else
_
]
]
=>
destruct
E
end
;
crush
;
eauto
6
;
end
;
crush
;
eauto
6
;
match
goal
with
match
goal
with
|
[
H1
:
x
#
#
_
,
H2
:
_
|-
v
x
:
_
|-
_
]
=>
|
[
H1
:
x
#
_
,
H2
:
_
|-
v
x
:
_
|-
_
]
=>
rewrite
(
subst_lookup
''
H1
H2
)
rewrite
(
subst_lookup
H1
H2
)
end
;
crush
.
end
;
crush
.
Qed
.
Qed
.
...
@@ -424,14 +373,7 @@ Module DeBruijn.
...
@@ -424,14 +373,7 @@ Module DeBruijn.
intros
;
rewrite
(
app_nil_end
G
)
;
apply
weaken_hasType
;
auto
.
intros
;
rewrite
(
app_nil_end
G
)
;
apply
weaken_hasType
;
auto
.
Qed
.
Qed
.
Theorem
weaken_hasType1
:
forall
e
t
,
Hint
Resolve
weaken_hasType_closed
.
nil
|-
e
e
:
t
->
forall
t
'
,
t
'
::
nil
|-
e
e
:
t
.
intros
;
change
(
t
'
::
nil
)
with
((
t
'
::
nil
)
++
nil
)
;
apply
weaken_hasType
;
crush
.
Qed
.
Hint
Resolve
weaken_hasType_closed
weaken_hasType1
.
Section
subst
.
Section
subst
.
Variable
e1
:
exp
.
Variable
e1
:
exp
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment