Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Contribute to GitLab
Sign in
Toggle navigation
C
cpdt
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
research
cpdt
Commits
c0a9b50f
Commit
c0a9b50f
authored
Dec 11, 2009
by
Adam Chlipala
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Automated LocallyNameless
parent
22c2f4b7
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
82 additions
and
53 deletions
+82
-53
Firstorder.v
src/Firstorder.v
+82
-53
No files found.
src/Firstorder.v
View file @
c0a9b50f
...
...
@@ -682,13 +682,16 @@ Module LocallyNameless.
Hint
Constructors
lclosed
.
Ltac
ln
:=
crush
;
repeat
(
match
goal
with
|
[
|-
context
[
if
?
E
then
_
else
_
]
]
=>
destruct
E
|
[
_
:
context
[
if
?
E
then
_
else
_
]
|-
_
]
=>
destruct
E
end
;
crush
)
;
eauto
.
Lemma
lclosed_S
:
forall
x
e
n
,
lclosed
n
(
open
x
n
e
)
->
lclosed
(
S
n
)
e
.
induction
e
;
inversion
1
;
crush
;
repeat
(
match
goal
with
|
[
_
:
context
[
if
?
E
then
_
else
_
]
|-
_
]
=>
destruct
E
end
;
crush
)
.
induction
e
;
inversion
1
;
ln
.
Qed
.
Hint
Resolve
lclosed_S
.
...
...
@@ -711,13 +714,12 @@ Module LocallyNameless.
|
S
n
'
=>
primes
n
'
++
"'"
end
.
Check
fold_left
.
Fixpoint
sumLengths
(
L
:
list
free_var
)
:
nat
:=
match
L
with
|
nil
=>
O
|
x
::
L
'
=>
String
.
length
x
+
sumLengths
L
'
end
.
Definition
fresh
(
L
:
list
free_var
)
:=
primes
(
sumLengths
L
)
.
Theorem
freshOk
'
:
forall
x
L
,
String
.
length
x
>
sumLengths
L
...
...
@@ -751,16 +753,25 @@ Module LocallyNameless.
Lemma
lclosed_open
:
forall
n
e
,
lclosed
n
e
->
forall
x
,
open
x
n
e
=
e
.
induction
1
;
crush
;
repeat
(
match
goal
with
|
[
|-
context
[
if
?
E
then
_
else
_
]
]
=>
destruct
E
end
;
crush
)
.
induction
1
;
ln
.
Qed
.
Hint
Resolve
lclosed_open
hasType_lclosed
.
Open
Scope
list_scope
.
Lemma
In_cons1
:
forall
T
(
x
x
'
:
T
)
ls
,
x
=
x
'
->
In
x
(
x
'
::
ls
)
.
crush
.
Qed
.
Lemma
In_cons2
:
forall
T
(
x
x
'
:
T
)
ls
,
In
x
ls
->
In
x
(
x
'
::
ls
)
.
crush
.
Qed
.
Lemma
In_app1
:
forall
T
(
x
:
T
)
ls2
ls1
,
In
x
ls1
->
In
x
(
ls1
++
ls2
)
.
...
...
@@ -773,9 +784,21 @@ Module LocallyNameless.
induction
ls1
;
crush
.
Qed
.
Hint
Resolve
In_app1
In_app2
.
Lemma
freshOk_app1
:
forall
L1
L2
,
~
In
(
fresh
(
L1
++
L2
))
L1
.
intros
;
generalize
(
freshOk
(
L1
++
L2
))
;
crush
.
Qed
.
Lemma
freshOk_app2
:
forall
L1
L2
,
~
In
(
fresh
(
L1
++
L2
))
L2
.
intros
;
generalize
(
freshOk
(
L1
++
L2
))
;
crush
.
Qed
.
Hint
Resolve
In_cons1
In_cons2
In_app1
In_app2
.
Section
subst
.
Hint
Resolve
freshOk_app1
freshOk_app2
.
Variable
x
:
free_var
.
Variable
e1
:
exp
.
...
...
@@ -793,15 +816,17 @@ Module LocallyNameless.
Definition
disj
x
(
G
:
ctx
)
:=
In
x
(
map
(
@
fst
_
_
)
G
)
->
False
.
Infix
"#"
:=
disj
(
no
associativity
,
at
level
90
)
.
Ltac
disj
:=
crush
;
match
goal
with
|
[
_
:
_
::
_
=
?
G0
++
_
|-
_
]
=>
destruct
G0
end
;
crush
;
eauto
.
Lemma
lookup_disj
'
:
forall
t
G1
,
G1
|-
v
x
:
t
->
forall
G
,
x
#
G
->
G1
=
G
++
(
x
,
xt
)
::
nil
->
t
=
xt
.
unfold
disj
;
induction
1
;
crush
;
match
goal
with
|
[
_
:
_
::
_
=
?
G0
++
_
|-
_
]
=>
destruct
G0
end
;
crush
;
eauto
.
unfold
disj
;
induction
1
;
disj
.
Qed
.
Lemma
lookup_disj
:
forall
t
G
,
...
...
@@ -816,10 +841,7 @@ Module LocallyNameless.
->
forall
G
,
G1
=
G
++
(
x
,
xt
)
::
nil
->
v
<>
x
->
G
|-
v
v
:
t
.
induction
1
;
crush
;
match
goal
with
|
[
_
:
_
::
_
=
?
G0
++
_
|-
_
]
=>
destruct
G0
end
;
crush
.
induction
1
;
disj
.
Qed
.
Lemma
lookup_ne
:
forall
G
v
t
,
...
...
@@ -841,13 +863,18 @@ Module LocallyNameless.
lclosed
n
e1
->
x
<>
x0
->
open
x0
n
(
subst
e
'
)
=
subst
(
open
x0
n
e
'
)
.
induction
e
'
;
crush
;
repeat
(
match
goal
with
|
[
|-
context
[
if
?
E
then
_
else
_
]
]
=>
destruct
E
end
;
crush
)
;
eauto
6.
induction
e
'
;
ln
.
Qed
.
Lemma
hasType_open_subst
:
forall
G
x0
e
t
,
G
|-
e
subst
(
open
x0
0
e
)
:
t
->
x
<>
x0
->
lclosed
0
e1
->
G
|-
e
open
x0
0
(
subst
e
)
:
t
.
intros
;
rewrite
open_subst
;
eauto
.
Qed
.
Hint
Re
write
open_subst
:
cpd
t
.
Hint
Re
solve
hasType_open_subs
t
.
Lemma
disj_push
:
forall
x0
(
t
:
type
)
G
,
x
#
G
...
...
@@ -856,13 +883,13 @@ Module LocallyNameless.
unfold
disj
;
crush
.
Qed
.
Hint
Immediat
e
disj_push
.
Hint
Resolv
e
disj_push
.
Lemma
lookup_cons
:
forall
x0
dom
G
x1
t
,
G
|-
v
x1
:
t
->
x0
#
G
->
~
In
x0
(
map
(
@
fst
_
_
)
G
)
->
(
x0
,
dom
)
::
G
|-
v
x1
:
t
.
unfold
disj
;
induction
1
;
crush
;
induction
1
;
crush
;
match
goal
with
|
[
H
:
_
|-
v
_
:
_
|-
_
]
=>
inversion
H
end
;
crush
.
...
...
@@ -871,18 +898,23 @@ Module LocallyNameless.
Hint
Resolve
lookup_cons
.
Hint
Unfold
disj
.
Lemma
TAbs_specialized
:
forall
G
e
'
dom
ran
L
x1
,
(
forall
x
,
~
In
x
(
x1
::
L
++
map
(
@
fst
_
_
)
G
)
->
(
x
,
dom
)
::
G
|-
e
open
x
O
e
'
:
ran
)
->
G
|-
e
Abs
e
'
:
dom
-->
ran
.
eauto
.
Qed
.
Lemma
hasType_subst
'
:
forall
G1
e
t
,
G1
|-
e
e
:
t
->
forall
G
,
G1
=
G
++
(
x
,
xt
)
::
nil
->
x
#
G
->
G
|-
e
e1
:
xt
->
G
|-
e
subst
e
:
t
.
induction
1
;
crush
;
eauto
.
destruct
(
string_dec
v
x
)
;
crush
.
apply
TAbs
with
(
x
::
L
++
map
(
@
fst
_
_
)
G0
)
;
crush
;
eauto
7.
apply
H0
;
eauto
6.
induction
1
;
ln
;
match
goal
with
|
[
L
:
list
free_var
,
_
:
?
x
#
_
|-
_
]
=>
apply
TAbs_specialized
with
L
x
;
eauto
20
end
.
Qed
.
Theorem
hasType_subst
:
forall
e
t
,
...
...
@@ -897,6 +929,16 @@ Module LocallyNameless.
Notation
"[ x ~> e1 ] e2"
:=
(
subst
x
e1
e2
)
(
no
associativity
,
at
level
60
)
.
Lemma
alpha_open
:
forall
x1
x2
e1
e2
n
,
~
In
x1
(
freeVars
e2
)
->
~
In
x2
(
freeVars
e2
)
->
[
x1
~>
e1
](
open
x1
n
e2
)
=
[
x2
~>
e1
](
open
x2
n
e2
)
.
induction
e2
;
crush
;
repeat
(
match
goal
with
|
[
|-
context
[
if
?
E
then
_
else
_
]
]
=>
destruct
E
end
;
crush
)
.
Qed
.
Inductive
val
:
exp
->
Prop
:=
|
VConst
:
forall
b
,
val
(
Const
b
)
|
VAbs
:
forall
e
,
val
(
Abs
e
)
.
...
...
@@ -939,27 +981,16 @@ Module LocallyNameless.
intros
;
eapply
progress
'
;
eauto
.
Qed
.
Lemma
alpha_open
:
forall
x1
x2
e1
e2
n
,
~
In
x1
(
freeVars
e2
)
->
~
In
x2
(
freeVars
e2
)
->
[
x1
~>
e1
](
open
x1
n
e2
)
=
[
x2
~>
e1
](
open
x2
n
e2
)
.
induction
e2
;
crush
;
repeat
(
match
goal
with
|
[
|-
context
[
if
?
E
then
_
else
_
]
]
=>
destruct
E
end
;
crush
)
.
Qed
.
Lemma
freshOk_app1
:
forall
L1
L2
,
~
In
(
fresh
(
L1
++
L2
))
L1
.
intros
;
generalize
(
freshOk
(
L1
++
L2
))
;
crush
.
Qed
.
Hint
Resolve
freshOk_app1
freshOk_app2
.
Lemma
freshOk_app2
:
forall
L1
L2
,
~
In
(
fresh
(
L1
++
L2
))
L2
.
intros
;
generalize
(
freshOk
(
L1
++
L2
))
;
crush
.
Lemma
hasType_alpha_open
:
forall
G
L
e0
e2
x
t
,
~
In
x
(
freeVars
e0
)
->
G
|-
e
[
fresh
(
L
++
freeVars
e0
)
~>
e2
](
open
(
fresh
(
L
++
freeVars
e0
))
0
e0
)
:
t
->
G
|-
e
[
x
~>
e2
](
open
x
0
e0
)
:
t
.
intros
;
rewrite
(
alpha_open
x
(
fresh
(
L
++
freeVars
e0
)))
;
auto
.
Qed
.
Hint
Resolve
freshOk_app1
freshOk_app2
.
Hint
Resolve
hasType_alpha_open
.
Lemma
preservation
'
:
forall
G
e
t
,
G
|-
e
e
:
t
->
G
=
nil
...
...
@@ -969,8 +1000,6 @@ Module LocallyNameless.
match
goal
with
|
[
H
:
_
|-
e
Abs
_
:
_
|-
_
]
=>
inversion
H
end
;
eauto
.
rewrite
(
alpha_open
x
(
fresh
(
L
++
freeVars
e0
)))
;
eauto
.
Qed
.
Theorem
preservation
:
forall
e
t
,
nil
|-
e
e
:
t
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment