Commit c4fd7607 authored by Adam Chlipala's avatar Adam Chlipala

s/itree/htree

parent 2a4baac2
...@@ -829,7 +829,7 @@ Qed. ...@@ -829,7 +829,7 @@ Qed.
%\begin{enumerate}%#<ol># %\begin{enumerate}%#<ol>#
%\item%#<li># Define a tree analogue of [hlist]. That is, define a parameterized type of binary trees with data at their leaves, and define a type family [itree] indexed by trees. The structure of an [itree] mirrors its index tree, with the type of each data element (which only occur at leaves) determined by applying a type function to the corresponding element of the index tree. Define a type standing for all possible paths from the root of a tree to leaves and use it to implement a function [tget] for extracting an element of an [itree] by path. Define a function [itmap2] for "mapping over two trees in parallel." That is, [itmap2] takes in two [itree]s with the same index tree, and it forms a new [itree] with the same index by applying a binary function pointwise. %\item%#<li># Define a tree analogue of [hlist]. That is, define a parameterized type of binary trees with data at their leaves, and define a type family [htree] indexed by trees. The structure of an [htree] mirrors its index tree, with the type of each data element (which only occur at leaves) determined by applying a type function to the corresponding element of the index tree. Define a type standing for all possible paths from the root of a tree to leaves and use it to implement a function [tget] for extracting an element of an [htree] by path. Define a function [htmap2] for "mapping over two trees in parallel." That is, [htmap2] takes in two [htree]s with the same index tree, and it forms a new [htree] with the same index by applying a binary function pointwise.
Repeat this process so that you implement each definition for each of the three definition styles covered in this chapter: inductive, recursive, and reflexive.#</li># Repeat this process so that you implement each definition for each of the three definition styles covered in this chapter: inductive, recursive, and reflexive.#</li>#
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment