Commit cd169938 authored by Adam Chlipala's avatar Adam Chlipala

De Bruijn

parent d603fecb
...@@ -8,7 +8,7 @@ ...@@ -8,7 +8,7 @@
*) *)
(* begin hide *) (* begin hide *)
Require Import List String. Require Import Arith String List.
Require Import Tactics. Require Import Tactics.
...@@ -341,3 +341,232 @@ Module Concrete. ...@@ -341,3 +341,232 @@ Module Concrete.
Qed. Qed.
End Concrete. End Concrete.
(** * De Bruijn Indices *)
Module DeBruijn.
Definition var := nat.
Definition var_eq := eq_nat_dec.
Inductive exp : Set :=
| Const : bool -> exp
| Var : var -> exp
| App : exp -> exp -> exp
| Abs : exp -> exp.
Inductive type : Set :=
| Bool : type
| Arrow : type -> type -> type.
Infix "-->" := Arrow (right associativity, at level 60).
Definition ctx := list type.
Reserved Notation "G |-v x : t" (no associativity, at level 90, x at next level).
Inductive lookup : ctx -> var -> type -> Prop :=
| First : forall t G,
t :: G |-v O : t
| Next : forall x t t' G,
G |-v x : t
-> t' :: G |-v S x : t
where "G |-v x : t" := (lookup G x t).
Hint Constructors lookup.
Reserved Notation "G |-e e : t" (no associativity, at level 90, e at next level).
Inductive hasType : ctx -> exp -> type -> Prop :=
| TConst : forall G b,
G |-e Const b : Bool
| TVar : forall G v t,
G |-v v : t
-> G |-e Var v : t
| TApp : forall G e1 e2 dom ran,
G |-e e1 : dom --> ran
-> G |-e e2 : dom
-> G |-e App e1 e2 : ran
| TAbs : forall G e' dom ran,
dom :: G |-e e' : ran
-> G |-e Abs e' : dom --> ran
where "G |-e e : t" := (hasType G e t).
Hint Constructors hasType.
Lemma weaken_lookup : forall G' v t G,
G |-v v : t
-> G ++ G' |-v v : t.
induction 1; crush.
Qed.
Hint Resolve weaken_lookup.
Theorem weaken_hasType' : forall G' G e t,
G |-e e : t
-> G ++ G' |-e e : t.
induction 1; crush; eauto.
Qed.
Theorem weaken_hasType : forall e t,
nil |-e e : t
-> forall G', G' |-e e : t.
intros; change G' with (nil ++ G');
eapply weaken_hasType'; eauto.
Qed.
Theorem weaken_hasType_closed : forall e t,
nil |-e e : t
-> forall G, G |-e e : t.
intros; rewrite (app_nil_end G); apply weaken_hasType; auto.
Qed.
Theorem weaken_hasType1 : forall e t,
nil |-e e : t
-> forall t', t' :: nil |-e e : t.
intros; change (t' :: nil) with ((t' :: nil) ++ nil);
apply weaken_hasType; crush.
Qed.
Hint Resolve weaken_hasType_closed weaken_hasType1.
Section subst.
Variable e1 : exp.
Fixpoint subst (x : var) (e2 : exp) : exp :=
match e2 with
| Const b => Const b
| Var x' =>
if var_eq x' x
then e1
else Var x'
| App e1 e2 => App (subst x e1) (subst x e2)
| Abs e' => Abs (subst (S x) e')
end.
Variable xt : type.
Lemma subst_eq : forall t G1,
G1 ++ xt :: nil |-v length G1 : t
-> t = xt.
induction G1; inversion 1; crush.
Qed.
Implicit Arguments subst_eq [t G1].
Lemma subst_eq' : forall t G1 x,
G1 ++ xt :: nil |-v x : t
-> x <> length G1
-> G1 |-v x : t.
induction G1; inversion 1; crush;
match goal with
| [ H : nil |-v _ : _ |- _ ] => inversion H
end.
Qed.
Hint Resolve subst_eq'.
Lemma subst_neq : forall v t G1,
G1 ++ xt :: nil |-v v : t
-> v <> length G1
-> G1 |-e Var v : t.
induction G1; inversion 1; crush.
Qed.
Hint Resolve subst_neq.
Hypothesis Ht' : nil |-e e1 : xt.
Lemma hasType_push : forall dom G1 e' ran,
dom :: G1 |-e subst (length (dom :: G1)) e' : ran
-> dom :: G1 |-e subst (S (length G1)) e' : ran.
trivial.
Qed.
Hint Resolve hasType_push.
Theorem subst_hasType : forall G e2 t,
G |-e e2 : t
-> forall G1, G = G1 ++ xt :: nil
-> G1 |-e subst (length G1) e2 : t.
induction 1; crush;
try match goal with
| [ |- context[if ?E then _ else _] ] => destruct E
end; crush; eauto 6;
try match goal with
| [ H : _ |-v _ : _ |- _ ] =>
rewrite (subst_eq H)
end; crush.
Qed.
Theorem subst_hasType_closed : forall e2 t,
xt :: nil |-e e2 : t
-> nil |-e subst O e2 : t.
intros; change O with (length (@nil type)); eapply subst_hasType; eauto.
Qed.
End subst.
Hint Resolve subst_hasType_closed.
Notation "[ x ~> e1 ] e2" := (subst e1 x e2) (no associativity, at level 80).
Inductive val : exp -> Prop :=
| VConst : forall b, val (Const b)
| VAbs : forall e, val (Abs e).
Hint Constructors val.
Reserved Notation "e1 ==> e2" (no associativity, at level 90).
Inductive step : exp -> exp -> Prop :=
| Beta : forall e1 e2,
App (Abs e1) e2 ==> [O ~> e2] e1
| Cong1 : forall e1 e2 e1',
e1 ==> e1'
-> App e1 e2 ==> App e1' e2
| Cong2 : forall e1 e2 e2',
val e1
-> e2 ==> e2'
-> App e1 e2 ==> App e1 e2'
where "e1 ==> e2" := (step e1 e2).
Hint Constructors step.
Lemma progress' : forall G e t, G |-e e : t
-> G = nil
-> val e \/ exists e', e ==> e'.
induction 1; crush; eauto;
try match goal with
| [ H : _ |-e _ : _ --> _ |- _ ] => inversion H
end;
repeat match goal with
| [ H : _ |- _ ] => solve [ inversion H; crush; eauto ]
end.
Qed.
Theorem progress : forall e t, nil |-e e : t
-> val e \/ exists e', e ==> e'.
intros; eapply progress'; eauto.
Qed.
Lemma preservation' : forall G e t, G |-e e : t
-> G = nil
-> forall e', e ==> e'
-> nil |-e e' : t.
induction 1; inversion 2; crush; eauto;
match goal with
| [ H : _ |-e Abs _ : _ |- _ ] => inversion H
end; eauto.
Qed.
Theorem preservation : forall e t, nil |-e e : t
-> forall e', e ==> e'
-> nil |-e e' : t.
intros; eapply preservation'; eauto.
Qed.
End DeBruijn.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment