Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Contribute to GitLab
Sign in
Toggle navigation
C
cpdt
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
research
cpdt
Commits
fab2f13e
Commit
fab2f13e
authored
Sep 29, 2008
by
Adam Chlipala
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
First two exercises
parent
4a99c15c
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
21 additions
and
0 deletions
+21
-0
Predicates.v
src/Predicates.v
+21
-0
No files found.
src/Predicates.v
View file @
fab2f13e
...
...
@@ -855,3 +855,24 @@ Qed.
(
*
end
thide
*
)
(
*
end
hide
*
)
(
**
*
Exercises
*
)
(
**
%
\
begin
{
enumerate
}%
#
<
ol
>
#
%
\
item
%
#
<
li
>
#
Prove
these
tautologies
of
propositional
logic
,
using
only
the
tactics
[
apply
]
,
[
assumption
]
,
[
constructor
]
,
[
destruct
]
,
[
intro
]
,
[
intros
]
,
[
left
]
,
[
right
]
,
[
split
]
,
and
[
unfold
]
.
%
\
begin
{
enumerate
}%
#
<
ol
>
#
%
\
item
%
#
<
li
>
#
[(
True
\
/
False
)
/
\
(
False
\
/
True
)]#
</
li
>
#
%
\
item
%
#
<
li
>
#
[
P
->
~
~
P
]#
</
li
>
#
%
\
item
%
#
<
li
>
#
[
P
/
\
(
Q
\
/
R
)
->
(
P
/
\
Q
)
\
/
(
P
/
\
R
)]#
</
li
>
#
#
</
ol
>
</
li
>
#
%
\
end
{
enumerate
}%
*
)
(
**
remove
printing
exists
*
)
(
**
%
\
item
%
#
<
li
>
#
Prove
the
following
tautology
of
first
-
order
logic
,
using
only
the
tactics
[
apply
]
,
[
assert
]
,
[
assumption
]
,
[
destruct
]
,
[
eapply
]
,
[
eassumption
]
,
and
[
exists
]
.
You
will
probably
find
[
assert
]
useful
for
stating
and
proving
an
intermediate
lemma
,
enabling
a
kind
of
"forward reasoning,"
in
contrast
to
the
"backward reasoning"
that
is
the
default
for
Coq
tactics
.
[
eassumption
]
is
a
version
of
[
assumption
]
that
will
do
matching
of
unification
variables
.
Let
some
variable
[
T
]
of
type
[
Set
]
be
the
set
of
individuals
.
[
x
]
is
a
constant
symbol
,
[
p
]
is
a
unary
predicate
symbol
,
[
q
]
is
a
binary
predicate
symbol
,
and
[
f
]
is
a
unary
function
symbol
.
**
)
(
**
printing
exists
$
\
exists
$
*
)
(
**
%
\
begin
{
enumerate
}%
#
<
ol
>
#
%
\
item
%
#
<
li
>
#
[
p
x
->
(
forall
x
,
p
x
->
exists
y
,
q
x
y
)
->
(
forall
x
y
,
q
x
y
->
q
y
(
f
y
))
->
exists
z
,
q
z
(
f
z
)]#
</
li
>
#
#
</
ol
>
</
li
>
#
%
\
end
{
enumerate
}%
#
</
ol
>
#
%
\
end
{
enumerate
}%
*
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment